LIU Yongqing, GAO Tianyuan, HAN Xu. Optomechanical Design and Analysis of Large Aperture Thermal Insensitive Star Sensor[J]. Infrared Technology , 2024, 46(1): 31-35.
Citation: LIU Yongqing, GAO Tianyuan, HAN Xu. Optomechanical Design and Analysis of Large Aperture Thermal Insensitive Star Sensor[J]. Infrared Technology , 2024, 46(1): 31-35.

Optomechanical Design and Analysis of Large Aperture Thermal Insensitive Star Sensor

More Information
  • Received Date: November 20, 2022
  • Revised Date: November 29, 2022
  • To meet the requirements of large-aperture and long-focal-length star sensors, an optomechanical design of a large-aperture thermally insensitive star sensor was created. According to the index requirements, an optomechanical thermal integration analysis of the thermally insensitive system was conducted. The MSC Patran software applied temperature loads to the primary and secondary mirror structures to calculate their thermoelastic deformations. The rigid body displacement of the node after thermal deformation was calculated using the Nastran software, and the Zernike polynomial coefficients of the primary and secondary mirror surfaces after deformation were analyzed using Sigft optical mechanical interface software. The results were imported to Zemax to predict the influence of lens shape change and rigid body displacement on speckle, optical axis drift, and wave aberration. The system performance meets the index requirements and the accuracy of the optical mechanical thermal integration analysis is verified through an installation and debugging test in the temperature range of 20℃±5℃, providing an accurate and fast optical mechanical thermal integration analysis process.
  • [1]
    Aurélia Secroun, Michael Lampton, Michael Levi. A high-accuracy, small field of view star guider with application to SNAP[J]. Experimental Astronomy, 2001, 12(2): 69-85. DOI: 10.1023/A:1016391518972
    [2]
    ZHANG S, XING F. Attitude measurement for spacecraft with high update rate based on the rolling shutter mode of a star tracker[C]//IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), 2018: 1-6.
    [3]
    Leung H, Dubash N, Xie N. Transactions on Aerospace and Electronic Systems[J]. IEEE, 2002, 38: 98.
    [4]
    LIU H, TAN J, YANG J K, et al. Method for thermo-optic analysis in a star sensor[J]. Def. Sci. J, 2010, 60(3): 276-281. DOI: 10.14429/dsj.60.354
    [5]
    LU S, HUANG Y. Thermal/Optical analysis of optical system of star tracker[C]//International Symposium on Photoelectronic Detection and Imaging, SPIE, 2011, 8196: 125-134.
    [6]
    Zacharov A I, Krusanova N L, Moskatiniev I V, et al. On increasing the accuracy of star trackers to subsecond levels[J]. Solar System Research, 2018, 52: 636-643. DOI: 10.1134/S0038094618070201
    [7]
    孟祥月, 王洋, 张磊, 等. 大相对孔径宽光谱星敏感器光学镜头设计[J]. 红外与激光工程, 2019, 48(7): 718005-0718005(8).

    MENG Xiangyue, WANG Yang, ZHANG Lei, et al. Lens design of star sensor with large relative aperture and wide spectral range[J]. Infrared and Laser Engineering, 2019, 48(7): 718005-0718005(8).
    [8]
    孙东起, 胡明勇, 刘晨凯, 等. 大口径长焦距星敏感器光学镜头的设计[J]. 激光与光电子学进展, 2021, 58(11): 1112001.

    SUN Dongqi, HU Mingyong, LIU Chenkai, et al. . Design of star sensor optical lens with large aperture andlong focal length[J]. Laser & Optoelectronics Progress, 2021, 58(11): 1112001.
    [9]
    伍雁雄, 吴洪波, 张继真, 等. 亚秒级甚高精度星相机光学系统设计[J]. 中国激光, 2015, 42(7): 312-321.

    WU Yanxiong, WU Hongbo, ZHANG Jizhen, et al. Optical system design of star camera with high precision better second level[J]. Chinese Journal of Lasers, 2015, 42(7): 312-321.
    [10]
    Lakshminarayanan V, Fleck A. Zernike polynomials: a guide[J]. Journal of Modern Optics, 2011, 58(7): 545-561. DOI: 10.1080/09500340.2011.554896
  • Related Articles

    [1]WANG Yefei, CHENG Yanping, YAO Yuan, LI Daojing, YU Xiao. Design of Membrane Diffractive Athermal Infrared Optical System[J]. Infrared Technology , 2021, 43(5): 422-428.
    [2]LI Shenghui, LI Xin, LI Hongjing. Design of Infrared Dual-Band Common Aperture Thermal Elimination Optical System Based on Harmonic Diffraction[J]. Infrared Technology , 2020, 42(1): 19-24.
    [3]HE Lei, ZHANG Jianlong, YANG Zhen, GUO Xinmin. Design of a Small Rolling-pitching Long-wave Infrared Optical System[J]. Infrared Technology , 2018, 40(12): 1142-1148.
    [4]LI Ruiyao, FU Yuegang, LIU Zhiying. Athermalization Design of Compact Medium-wave Infrared Imaging System[J]. Infrared Technology , 2018, 40(2): 119-124.
    [6]WU Guo-jun, BAI Ting-zhu, BAI Fu-ning. Research on Infrared Images Simulation by Inversing the Scene of the Visible Light Images[J]. Infrared Technology , 2011, 33(10): 574-579. DOI: 10.3969/j.issn.1001-8891.2011.10.004
    [7]WU Chun, LIU Xiang-xuan, WU You-peng. Study on the Preparation and Properties of Visible Light and Heat Infrared Camouflage Composite Materials[J]. Infrared Technology , 2009, 31(10): 602-606. DOI: 10.3969/j.issn.1001-8891.2009.10.011
    [8]BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007
    [9]CHEN Lv-ji, FENG Sheng-rong. A Compact Athermalizing Infrared Optical System[J]. Infrared Technology , 2007, 29(4): 203-205. DOI: 10.3969/j.issn.1001-8891.2007.04.004
    [10]MING Jing-qian, JIN Ning, GUO Lan, FENG Sheng-rong. An Athermal Design of Infrared Hybrid Refractive/Diffractive Optical System in 7.5~10.5μm Spectrum[J]. Infrared Technology , 2006, 28(5): 261-265. DOI: 10.3969/j.issn.1001-8891.2006.05.004
  • Cited by

    Periodical cited type(1)

    1. 周佳乐,宋敏敏,雷昊,刘建旭,曹卫卫,施瑶瑶,董大兴,刘友文. 基于YOLO与图像修复的仿真场景等效构设研究. 激光与红外. 2025(01): 145-154 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return