Volume 43 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
SHEN Kai, HE Xin, ZHANG Xingxiang. Structural Design and Support Characteristics Analysis of Cryogenic Mirror Assembly[J]. Infrared Technology , 2021, 43(12): 1172-1176.
Citation: SHEN Kai, HE Xin, ZHANG Xingxiang. Structural Design and Support Characteristics Analysis of Cryogenic Mirror Assembly[J]. Infrared Technology , 2021, 43(12): 1172-1176.

Structural Design and Support Characteristics Analysis of Cryogenic Mirror Assembly

  • Received Date: 2020-12-14
  • Rev Recd Date: 2021-01-26
  • Publish Date: 2021-12-20
  • The infrared opto-mechanical system can improve detection sensitivity by working in a cryogenic environment to reduce background radiation, which causes many technical challenges for mirror assembly structure design. In a cryogenic environment, different coefficient of thermal expansion (CTE) of the mirror and the connector cause the surface accuracy change to be the main problem. Design the structure of the ϕ450 mm mirror assembly working at 240 K. The mirror material is SiC, and the connector material is Invar. The support method is rear support in the center. Great flexibility is designed for the connector to improve surface accuracy. Further, the main design parameters are optimized and analyzed. The influence curves on the surface accuracy are obtained. The root mean square (RMS) of gravity along the optical axis is 8.585 nm, the RMS along the radial direction is 3.710 nm, and the RMS is 5.086 nm working at 240 K. The first order frequency is 277 Hz, and the lightweight rate is 89.4%.
  • loading
  • [1]
    Neugebauer G, Habing H J, Duinen R J V, et al. The infrared astronomical satellite (IRAS) mission[J]. Astrophysical Journal, 1984, 278(1): L1-L6. http://www.researchgate.net/profile/Jim_Emerson/publication/28643555_The_Infrared_Astronomical_Satellite_(IRAS)_mission/links/0c96051daa1b78b87c000000.pdf?ev=pub_ext_doc_dl_meta
    [2]
    Göran L Pilbratt. Herschel mission overview and key programmes[J]. Proc. SPIE, 2008, 7010: 701002. doi:  10.1117/12.789431
    [3]
    Sein E, Toulemont Y, Frédéric Safa, et al. A ϕ3.5 m SiC telescope for Herschel mission[J]. Proc. of SPIE, 2003, 4850: 606-618. doi:  10.1117/12.461804
    [4]
    Kaneda H, Onaka T, Yamashiro R, et al. Optical performance of the ASTRO-F telescope at cryogenic temperatures[J]. Proc. of SPIE, 2003, 4850: 230-240. doi:  10.1117/12.461181
    [5]
    Takao N, Keigo E, Masayuki H, et al. Flight performance of the AKARI cryogenic system[J]. Publications of the Astronomical Society of Japan, 2007, 59: S377-S387. doi:  10.1093/pasj/59.sp2.S377
    [6]
    Davila P S, Bos B J, Contreras J, et al. The James webbspace telescope science instrument suite: an overview of optical designs[C]//Proc. of SPIE, 2004, 5587: 611-627.
    [7]
    Knight J S, Acton D S, Lightsey P, et al. Integrated telescope model for the James Webb space telescope[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2012: 8449: 84490V.
    [8]
    邱成波. 低温大口径反射镜支撑装调系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    QIU Chengbo. Study on support and adjustment of large-diameter mirrors on low temperature condition[D]. Harbin: Harbin Institute of Technology, 2016.
    [9]
    李晟, 范斌, 王伟刚, 等. 深低温SiC空间反射镜背部与侧面支撑结构对比[J]. 红外与激光工程, 2020, 49(2): 268-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002036.htm

    LI Sheng, FAN Bin, WANG Weigang, et al. Comparison of back supporting structure and side supporting structure of space mirror manufactured by silicon carbide in cryogenic environment[J]. Infrared and Laser Engineering, 2020, 49(2): 268-277. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202002036.htm
    [10]
    任建岳, 陈长征, 何斌, 等. SiC和SiC/Al在TMA空间遥感器中的应用[J]. 光学精密工程, 2008, 16(12): 2537-2543. doi:  10.3321/j.issn:1004-924X.2008.12.035

    REN Jianyue, CHEN Changzheng, HE Bin, et al. Application of SiC and SiC/Al to TMA optical remote sensor[J]. Optics and Precision Engineering, 2008, 16(12): 2537-2543. doi:  10.3321/j.issn:1004-924X.2008.12.035
    [11]
    王克军, 董吉洪, 周平伟, 等. 空间遥感器反射镜背部支撑结构设计[J]. 红外与激光工程, 2019, 48(7): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201907026.htm

    WANG Kejun, DONG Jihong, ZHOU Pingwei, et al. Back support structure design of mirror of space remote sensor[J]. Infrared and Laser Engineering, 2019, 48(7): 179-189. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201907026.htm
    [12]
    包奇红, 沙巍, 陈长征, 等. 中心支撑长条形反射镜轻型优化设计[J]. 红外与激光工程, 2017, 46(7): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201707025.htm

    BAO Qihong, SHA Wei, CHEN Changzheng, et al. Lightweight and optimization design of rectangular reflective mirror supported in centre[J]. Infrared and Laser Engineering, 2017, 46(7): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201707025.htm
    [13]
    辛宏伟. 小型轻质长条反射镜挠性支撑方案研究[J]. 光机电信息, 2010, 27(7): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDX201007015.htm

    XIN Hongwei. Design and analysis on the flexible structure of the optical reflector[J]. Ome Information, 2010, 27(7): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDX201007015.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (155) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return