TONG Yaonan, YANG Haitao, CAO Zhiqi, CUI Jianshan, LIU Zhi. Infrared Image Fusion Enhancement Algorithm Based on Improved Wavelet Threshold Function and Full-Scale Retinex[J]. Infrared Technology , 2024, 46(3): 332-341.
Citation: TONG Yaonan, YANG Haitao, CAO Zhiqi, CUI Jianshan, LIU Zhi. Infrared Image Fusion Enhancement Algorithm Based on Improved Wavelet Threshold Function and Full-Scale Retinex[J]. Infrared Technology , 2024, 46(3): 332-341.

Infrared Image Fusion Enhancement Algorithm Based on Improved Wavelet Threshold Function and Full-Scale Retinex

More Information
  • Received Date: May 15, 2023
  • Revised Date: September 05, 2023
  • This paper proposes an infrared image fusion enhancement algorithm based on an improved wavelet threshold function and full-scale Retinex to address the problems of low signal-to-noise ratio, fuzzy detail, and poor clarity in existing infrared image enhancement algorithms. First, to overcome the degradation of infrared images caused by fixed-scale parameters and light scattering, a full-scale map of Retinex-scale parameters was obtained using atmospheric transmittance to improve image clarity. The input image and processed image with full-scale Retinex were used as the first and second inputs of the algorithm, respectively. Second, an improved wavelet threshold function was designed to solve the problems of artifacts and detail loss in the image-denoising process of the traditional wavelet threshold function. The threshold function introduces a scaling factor that can be adjusted adaptively according to the number of layers after calculating the wavelet coefficient of the high-frequency subgraph of each layer. An adjustment factor was introduced and combined with an exponential function to suppress the high-frequency subgraph noise and preserve detailed information. The high- and low-frequency subgraphs of the above two inputs were then fused using wavelet image fusion to improve the texture details of the output images. The simulation results demonstrate that the proposed algorithm outperforms other comparison algorithms regarding noise reduction and detail highlighting capabilities, enhancing the visual quality of infrared images for the human eye. Finally, this algorithm was applied to enhance infrared images collected by an infrared imaging module, and the experimental results showed that the proposed method is practical.
  • [1]
    Gowen A A, Tiwari B K, Cullen P J, et al. Applications of thermal imaging in food quality and safety assessment[J]. Trends in Food Science & Technology, 2010, 21(4): 190-200.
    [2]
    赵明珠, 张艳, 朱应燕. 基于红外热成像的早期疾病检测技术的研究进展[J]. 激光与光电子学进展, 2021, 58(8): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202108003.htm

    ZHAO Mingzhu, ZHANG Yan, ZHU Yingyan. Research progress of early disease detection technology based on infrared thermography[J]. Advances in Lasers and Optoelectronics, 2021, 58(8): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202108003.htm
    [3]
    YUAN C, LIU Z, ZHANG Y. Fire detection using infrared images for UAV-based forest fire surveillance[C]//International Conference on Unmanned Aircraft Systems (ICUAS), 2017: 567-572.
    [4]
    WANG L, Leedham G, Cho S Y. Infrared imaging of hand vein patterns for biometric purposes[J]. IET Computer Vision, 2007, 1(3): 113-122. DOI: 10.1049/iet-cvi:20070009
    [5]
    Taheri Garavand A, Ahmadi H, Omid M, et al. An intelligent approach for cooling radiator fault diagnosis based on infrared thermal image processing technique[J]. Applied Thermal Engineering, 2015, 87: 434-443. DOI: 10.1016/j.applthermaleng.2015.05.038
    [6]
    郝建新. 基于小波变换与Retinex的电路板红外图像增强技术[J]. 红外技术, 2015, 37(12): 1036-1040. http://hwjs.nvir.cn/article/id/hwjs201512009

    HAO Jianxin. Circuit board infrared image enhancement based on wavelet transform and Retinex[J]. Infrared Technology, 2015, 37(12): 1036-1040. http://hwjs.nvir.cn/article/id/hwjs201512009
    [7]
    尹士畅, 喻松林. 基于小波变换和直方图均衡的红外图像增强[J]. 激光与红外, 2013, 43(2): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201302025.htm

    YIN Shichang, YU Songlin. Infrared image enhancement based on wavelet transform and histogram equalization[J]. Laser and Infrared, 2013, 43(2): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201302025.htm
    [8]
    CAI B, XU X, GUO K, et al. A joint intrinsic-extrinsic prior model for Retinex[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4000-4009.
    [9]
    ZHANG X, WANG J. Contourlet-based non-local mean via Retinex theory for robot infrared image enhancement[J]. EAI Endorsed Transactions on Scalable Information Systems, 2022, 9(4): e10-e10.
    [10]
    王晨, 汤心溢, 高思莉. 基于人眼视觉的红外图像增强算法研究[J]. 激光与红外, 2017, 47(1): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201701023.htm

    WANG Chen, TANG Xinyi, GAO Sili. Research on infrared image enhancement algorithm based on human eye vision[J]. Laser and Infrared, 2017, 47(1): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201701023.htm
    [11]
    龚昌来, 罗聪, 杨冬涛, 等. 一种基于平稳小波域的红外图像增强方法[J]. 激光与红外, 2013, 43(6): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201306024.htm

    GONG Changlai, LUO Cong, YANG Dongtao, et al. An infrared image enhancement method based on smooth wavelet domain[J]. Laser and Infrared, 2013, 43(6): 703-707. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201306024.htm
    [12]
    Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455. DOI: 10.1093/biomet/81.3.425
    [13]
    黄玉昌, 侯德文. 基于改进小波阈值函数的指纹图像去噪[J]. 计算机工程与应用, 2014, 50(6): 179-181, 209. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201406039.htm

    HUANG Yuchang, HOU Dewen. Fingerprint image denoising based on improved wavelet threshold function[J]. Computer Engineering and Applications, 2014, 50(6): 179-181, 209. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201406039.htm
    [14]
    DU J, LI W, XIAO B, et al. Union Laplacian pyramid with multiple features for medical image fusion[J]. Neurocomputing, 2016, 194: 326-339. DOI: 10.1016/j.neucom.2016.02.047
    [15]
    刘志强, 朱大奇. 一种新型小波图像融合的水下目标增强算法[J]. 控制工程, 2022, 29(12): 2235-2243. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202212008.htm

    LIU Zhiqiang, ZHU Daqi. A novel underwater target enhancement algorithm for wavelet image fusion[J]. Control Engineering, 2022, 29(12): 2235-2243. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202212008.htm
    [16]
    易清明, 陈明敏, 石敏. 一种改进的小波去噪方法在红外图像中应用[J]. 计算机工程与应用, 2016, 52(1): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201601033.htm

    YI Qingming, CHEN Mingmin, SHI Min. An improved wavelet denoising method in infrared images[J]. Computer Engineering and Applications, 2016, 52(1): 173-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201601033.htm
    [17]
    徐兴贵, 杨平, 刘永利. 基于全尺度Retinex算法的夜间图像去雾[J]. 微电子学与计算机, 2017, 34(7): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201707028.htm

    XU Xinggui, YANG Ping, LIU Yongli. Nighttime image defogging based on full-scale Retinex algorithm[J]. Microelectronics and Computers, 2017, 34(7): 132-136. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYJ201707028.htm
    [18]
    占必超, 吴一全, 纪守新. 基于平稳小波变换和Retinex的红外图像增强方法[J]. 光学学报, 2010, 30(10): 2788-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201010007.htm

    ZHAN Bichao, WU Yiquan, JI Shouxin. Infrared image enhancement method based on smooth wavelet transform and Retinex[J]. Journal of Optics, 2010, 30(10): 2788-2793. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201010007.htm
    [19]
    陈文艺, 杨承勋, 杨辉. 引导滤波和对数变换算法融合的多尺度Retinex红外图像增强[J]. 红外技术, 2022, 44(4): 397-403. http://hwjs.nvir.cn/article/id/f1fcd3be-4a81-4b25-ad02-5f8c035f0be2

    CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex infrared image enhancement by fusion of bootstrap filtering and logarithmic transformation algorithms[J]. Infrared Technology, 2022, 44(4): 397-403. http://hwjs.nvir.cn/article/id/f1fcd3be-4a81-4b25-ad02-5f8c035f0be2
  • Cited by

    Periodical cited type(11)

    1. 李卓. 基于线结构光成像技术的定制产品包装视觉图像处理方法. 激光杂志. 2024(02): 208-213 .
    2. 徐立,刘亮,赵凤军. 灰度变换下多模态刚性医学图像分层增强仿真. 计算机仿真. 2024(04): 250-254 .
    3. 唐菀,刘鑫. 视觉注意模型的低照度图像感兴趣区域检测. 计算机仿真. 2024(05): 242-245+337 .
    4. 阚绪康,史格非,杨雪榕. 基于动态特征点滤除与关键帧选择优化的ORB-SLAM2算法. 计算机应用. 2024(10): 3185-3190 .
    5. 卢佳佳,蔡坚勇. 基于增强视觉质量的图像感兴趣区域检测研究. 计算机仿真. 2023(01): 234-238 .
    6. 孙宇辰,石逸夫,王查理,石可民. 一种视觉定位算法在社区低速车上的应用. 科技与创新. 2023(08): 168-170 .
    7. 来金强. 基于目标检测和动静点分离的视觉即时定位与地图构建技术. 机械制造. 2023(11): 80-84 .
    8. 刘文杰,刘小娇,付猛,姚玉波. 基于视觉SLAM的动态图像处理方法研究. 数字通信世界. 2022(06): 14-16 .
    9. 贾雨萌,刘甜甜,李振华. 一种改进的SLAM建图方法研究. 物联网技术. 2022(08): 71-73 .
    10. 张凤,王伟良,袁帅,孙明智. 动态环境下基于卷积神经网络的视觉SLAM方法. 沈阳工业大学学报. 2022(06): 688-693 .
    11. 王德欣. SLAM技术及其在测绘领域中的应用研究. 西部资源. 2022(05): 106-108 .

    Other cited types(2)

Catalog

    Article views (117) PDF downloads (41) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return