Citation: | TIAN Hao, HU Haifei, CAI Sheng, WANG Jiulong, XU Wei. Detectability Analysis of Low Earth Orbital Infrared Detectors for Near Space Hypersonic Targets[J]. Infrared Technology , 2024, 46(6): 617-624. |
Using the infrared detector of the STSS LEO demo satellite as an example, the detectability of aerial hypersonic targets such as AGM-183A was analyzed. To visually compare the detectability of the targets under different conditions, the number of pixels on the focal plane with output signal-to-noise ratio (SNR) higher than a specified threshold was quantified. First, the aerodynamic temperature and spectral radiant energy of the hypersonic target were calculated. The infrared detector model was used to predict the peak value of the SNR and the number of responding pixels in the focal plane for specified detection distances and angles. The analysis results indicate that in the sub-satellite point detection mode, the SNR of the focal plane reaches the highest value (335), and the number of responding pixels with SNR higher than the threshold (6) reaches its maximum(54×54), representing the maximum detectability of the LEO detector for AGM-183A targets. In the edge detection mode, the variation in target detectability with detection angle and target temperature was calculated. The results show that, when the target temperature approaches 800 K and the detection azimuth angle ψ is less than 10° (or greater than 170°), the number of responding pixels on the focal plane reaches the lowest value of 4×4, indicating that the AGM-183A target detectability approaches the theoretical limit of the LEO detector (3×3). By comparison, changes in the target temperature have a more substantial impact on target detectability. In edge detection mode, the escape probability of the target is relatively high when the target uses active cooling to reduce its surface aerodynamic temperature to less than 800 K. From the perspective of improving early warning capability, the SNR threshold value of LEO detector focal plane should be increased for targets with surface temperatures approaching 800 K at the most unfavorable angles of ψ (less than 10° or greater than 170°, with the minimum number of responding pixels in the focal plane no fewer than 8×8).
[1] |
赵荣, 储思思, 霍丹. 美国AGM-183A高超声速导弹发展情况研究[J]. 中国航天, 2022(6): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT202206004.htm
ZHAO Rong, CHU Sisi, HUO Dan. Research on the development of US AGM-183A hypersonic missile[J]. Aerospace China, 2022(6): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHT202206004.htm
|
[2] |
郑建成, 谭贤四, 曲智国, 等. 高超声速/常规巡航导弹预警探测特征比较[J]. 现代防御技术, 2022, 50(4): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ202204011.htm
ZHENG Jiancheng, TAN Xiansi, QU Zhiguo, et al. Comparison of early warning detection characteristics between hypersonic cruise missile and cruise missile[J]. Modern Defence Technology, 2022, 50(4): 116-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ202204011.htm
|
[3] |
陈兢, 赵飞. 美国巡航导弹防御系统发展现状与分析[J]. 飞航导弹, 2021, 35(6): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD202106013.htm
CHEN Jing, ZHAO Fei. Development and analysis of cruise missile defense systems of the United States[J]. Aerodynamic Missile Journal, 2021, 35(6): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD202106013.htm
|
[4] |
金欣, 梁维泰, 王俊, 等. 反临近空间目标作战的若干问题思考[J]. 现代防御技术, 2013, 41(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201306002.htm
JIN Xin, LIANG Weitai, WANG Jun, et al. Discussion on issues of anti -near-space-target operation[J]. Modern Defence Technology, 2013, 41(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201306002.htm
|
[5] |
杜晨慧. 高超声速飞行器综合热管理及关键技术研究进展[J]. 装备环境工程, 2023, 20(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX202301007.htm
DU Chenhui. Research progress on integrated thermal management and key technology of hypersonic vehicles[J]. Equipment Environmental Engineering, 2023, 20(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX202301007.htm
|
[6] |
杨钰婷, 乔砚淙, 刘伟, 等. 高超声速飞行器综合热管理系统性能仿真与优化[J]. 节能技术, 2022, 40(3): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS202203004.htm
YANG Yuting, QIAO Yancong, LIU Wei, et al. Simulation and optimization of integrated thermal management system for hypersonic vehicle[J]. Energy Conservation Technology, 2022, 40(3): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-JNJS202203004.htm
|
[7] |
余协正, 陈宁, 陈萍萍, 等. 临近空间高超声速飞行器目标特性及突防威胁分析[J]. 航天电子对抗, 2019, 35(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ201906011.htm
YU Xiezheng, CHEN Ning, CHEN Pingping, et al. Target characteristics and penetration threats analysis of hypersonic vehicle in the near-space[J]. Aerospace Electronic Warfare, 2019, 35(6): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ201906011.htm
|
[8] |
张昊. 高超声速武器作战样式及防御对策分析[J]. 飞航导弹, 2019(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201901026.htm
ZHANG Hao. Analysis of combat styles and defense strategies for hypersonic weapons[J]. Aerodynamic Missile Journal, 2019(1): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-FHDD201901026.htm
|
[9] |
周方方, 张二磊, 陈宜峰. 临近空间高超声速飞行器红外特性建模仿真[J]. 红外技术, 2017, 39(8): 746-750. http://hwjs.nvir.cn/cn/article/id/hwjs201708013
ZHOU Fangfang, ZHANG Erlei, CHEN Yifeng. Infrared simulation of near space hypersonic vehicle[J]. Infrared Technology, 2017, 39(8): 746-750. http://hwjs.nvir.cn/cn/article/id/hwjs201708013
|
[10] |
张凯莉. 红外预警卫星对弹道中段目标探测能力研究[D]. 西安: 西安电子科技大学, 2018.
ZHANG Kaili. Research on Detection Ability of Infrared Early Warning Satellite for Target in Ballistic Midcourse[D]. Xi'an: Xidian University, 2018.
|
[11] |
康甜. STSS Demo红外传感器性能分析[J]. 红外技术, 2018, 40(6): 534-540. http://hwjs.nvir.cn/cn/article/id/hwjs201806003
KANG Tian. Analysis of STSS Demo infrared sensor[J]. Infrared Technology, 2018, 40(6): 534-540. http://hwjs.nvir.cn/cn/article/id/hwjs201806003
|
[12] |
郭松, 贾成龙, 陈杰. 美国STSS卫星有效载荷主要指标探讨[J]. 上海航天, 2012, 29(3): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201203010.htm
GUO Song, JIA Chenglong, CHEN Jie. Discussion on main parameters of US STSS satellite payload[J]. Aerospace Shanghai, 2012, 29(3): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHT201203010.htm
|
[13] |
NIU Z Y, SU T, ZHANG J B. Target detection algorithm for hypersonic vehicle based on wide band Radar echo model[J]. IEEE Access, 2019(7): 7678-7690.
|
[14] |
李培泽. 天基红外预警高超声速目标成像特征研究[D]. 西安: 西安电子科技大学, 2022.
LI Peize. Research on Image Characteristics of Hypersonic Target Based on Space-based Infrared Warning System[D]. Xi'an: Xidian University, 2022.
|
[15] |
KELLER J. Air force seeks best companies to develop next-generation airborne laser weapons[J]. Military & Aerospace Electronics, 2017, 28(5): 6-7.
|
[16] |
赵良玉, 雍恩米, 王波兰. 反临近空间高超声速飞行器若干研究进展[J]. 2020, 41(10): 1240-1250.
ZHAO Liangyu, YONG Enmi, WANG Bolan. Some achievements on interception of near space hypersonic vehicles[J]. Journal of Astronautics, 2020, 41(10): 1240-1250.
|
[1] | SUN Aiping, HU Jianchuan, AN Changliang, LI Xunniu, WANG Chenyue, GONG Yangyun, SONG Yuyu. Optical System Design of Suspended Infrared Night Vision Based on Low Light Level Helmet Observation[J]. Infrared Technology , 2022, 44(12): 1278-1286. |
[2] | SHI Yongbiao, ZHANG Yong. Survey on Development about Vehicular Infrared Night Vision Technology[J]. Infrared Technology , 2019, 41(6): 504-510. |
[3] | ZHU Xiao-hong, LIN Su-zhen, WANG Dong-juan. Analysis of Multi-band Infrared Point Targets Night Vision Imaging Difference[J]. Infrared Technology , 2015, (4): 289-295. |
[4] | SONG Min, ZHANG Rong-zhu, SUN Nian-chun. Design of a Night Vision System Based on Infrared and Low Light Level Imaging Sensor Technology[J]. Infrared Technology , 2014, (11): 885-889. |
[5] | HU De-chao, ZHU You-pan, LUO Lin, LI Ze-min, FAN Hong-bo, SUN Ai-ping, SU Fan, HAN Juan. Research of Real-time Night-Vision Image Fusion System Based on Infrared Object Extraction[J]. Infrared Technology , 2014, (2): 125-130. |
[6] | LUO Yuan, WANG Ling-xue, JIN Wei-qi, ZHAO Yuan-meng, ZHANG Chang-xin, LI Jia-kun. Developments of Image Processing Algorithms and Systems for LLL(Vis.)/IR Color Night Vision[J]. Infrared Technology , 2010, 32(6): 337-344. DOI: 10.3969/j.issn.1001-8891.2010.06.007 |
[7] | HUANG Dian-li, YAO Da-zhi, LIU Wei, SUN Yang-qing, HUA Yuan-yuan. Development of Intelligent Night Vision CCD Monitoring System[J]. Infrared Technology , 2009, 31(7): 390-394. DOI: 10.3969/j.issn.1001-8891.2009.07.005 |
[8] | CAI Ke-jun, FU Yue-gang, GU Ping-ping, ZHANG Bu-sheng, LIU Xiao-dong. Night Simulation System for Low-Level-Light Night Vision Systems Testing[J]. Infrared Technology , 2007, 29(2): 102-106. DOI: 10.3969/j.issn.1001-8891.2007.02.011 |
[9] | ZHENG Wei-jian, JIN Wei-qi, SU Jun-hong. The Developing Potential of Near-Infrared Imaging Night-vision Technologies[J]. Infrared Technology , 2005, 27(4): 269-273. DOI: 10.3969/j.issn.1001-8891.2005.04.001 |
[10] | Research of Night Vision Imaging System on Head-Binocular[J]. Infrared Technology , 2005, 27(1): 19-22. DOI: 10.3969/j.issn.1001-8891.2005.01.005 |