HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153.
Citation: HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153.

Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method

More Information
  • Received Date: April 23, 2022
  • Revised Date: June 22, 2022
  • In the target recognition of infrared thermal imaging images, a detection algorithm based on improved YOLOv5 for infrared low-resolution targets was proposed to address the poor detection of low-resolution small targets and low detection rate of complex-scale targets. The LLVIP infrared dataset was selected and the detection effect was compared by introducing different attention mechanisms. The attention mechanism with the best effect was selected to improve the loss function of the target detection network and improve the detection rate of small targets. A TiX650 thermal imager was utilized to acquire small target image samples for optimal sampling and broadening of the original dataset, and the YOLOv5 network was trained using the improved before and after, respectively. The performance improvement of the model was evaluated from the model-training and target detection results, and the experimental results demonstrate that compared with the original training model, the improved YOLOv5 training model has a significant improvement in the detection accuracy of low-resolution small targets in the same scene of infrared imaging and exhibits a low miss detection rate.
  • [1]
    张志强, 王萍, 于旭东, 等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报, 2020, 41(5): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005002.htm

    ZHANG Zhiqiang, WANG Ping, YU Xudong, et al. Study on high accuracy temperature measurement technology of infrared thermal imager[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202005002.htm
    [2]
    杨其利, 周炳红, 郑伟, 等. 基于全卷积网络的红外弱小目标检测算法[J]. 红外技术, 2021, 43(4): 349-356. http://hwjs.nvir.cn/article/id/0803b37e-a6af-431f-9c4e-77c5efec85b6

    YANG Qili, ZHOU Binghong, ZHENG Wei, et al. Infrared weak target detection algorithm based on full convolutional network[J]. Infrared Technology, 2021, 43(4): 349-356. http://hwjs.nvir.cn/article/id/0803b37e-a6af-431f-9c4e-77c5efec85b6
    [3]
    Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
    [4]
    ZHAO M, CHENG L, YANG X, et al. TBC-Net: A real-time detector for infrared small target detection using semantic constraint[J/OL]. arXiv preprint arXiv: 2001.05852, 2019.
    [5]
    ZHAO B, WANG C, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(5): 4481-4492.
    [6]
    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [7]
    Redmon J, Farhadi A. Yolov3: an incremental improvement[J/OL]. Computer Vision and Pattern Recognition, https://arxiv.org/abs/1804.02767.
    [8]
    SUN Y, SHAO Y, YANG G, et al. A Method of Infrared Image Pedestrian Detection with Improved YOLOv3 Algorithm[J]. American Journal of Optics and Photonics, 2021, 9(3): 32-38. DOI: 10.11648/j.ajop.20210903.11
    [9]
    邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202213006.htm

    QIU Tianheng, WANG Ling, WANG Peng, et al. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202213006.htm
    [10]
    郭磊, 王邱龙, 薛伟, 等. 基于改进YOLOv5的小目标检测算法[J]. 电子科技大学学报, 2022, 51(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202202013.htm

    GUO Lei, WANG Qiulong, XUE Wei, et al. A Small Object Detection Algorithm Based on Improved YOLOv5[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(2): 251-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DKDX202202013.htm
    [11]
    JIA X, ZHU C, LI M, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3496-3504.
    [12]
    TAN S, YAN J, JIANG Z, et al. Approach for improving YOLOv5 network with application to remote sensing target detection[J]. Journal of Applied Remote Sensing, 2021, 15(3): 036512.
    [13]
    REN S, HE K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149
    [14]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
    [15]
    Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
    [16]
    HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
    [17]
    聂鹏, 肖欢, 喻聪. YOLOv5预测边界框分簇自适应损失权重改进模型[J/OL]. 控制与决策, [2022-02-07], https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=KZYC2022020100G&uniplatform=NZKPT&v=SFfl7Znyzm6DrlyluGWpdKIbirJm5mFkFaafF4bE9xywSjZRggaM-XJWOO0if82l.

    NIE Peng, XIAO Huan, YU Cong. Enhanced self-adaptive loss weight YOLOv5 model based on predicted[J/OL]. Control and Decision, [2022-02-07], https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=KZYC2022020100G&uniplatform=NZKPT&v=SFfl7Znyzm6DrlyluGWpdKIbirJm5mFkFaafF4bE9xywSjZRggaM-XJWOO0if82l.
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]LI Ruihong, FU Zhitao, ZHANG Shaochen, ZHANG Jian, WANG Leiguang. Nighttime Object Detection in Infrared and Visible Images Based on Multi-Attention Mechanism[J]. Infrared Technology , 2024, 46(12): 1371-1379.
    [3]WANG Yan, ZHANG Jinfeng, WANG Likang, FAN Xianghui. Underwater Image Enhancement Based on Attention Mechanism and Feature Reconstruction[J]. Infrared Technology , 2024, 46(9): 1006-1014.
    [4]LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801.
    [5]DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764.
    [6]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [7]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [8]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [9]LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574.
    [10]WANG Hao, ZHANG Jingjing, LI Yuanyuan, WANG Feng, XUN Lina. Hyperspectral Image Classification Based on 3D Convolution Joint Attention Mechanism[J]. Infrared Technology , 2020, 42(3): 264-271.
  • Cited by

    Periodical cited type(2)

    1. 赵洪山,王惠东,刘婧萱,杨伟新,李忠航,林诗雨,余洋,吕廷彦. 考虑局部纹理特征和全局温度分布的电力设备红外图像超分辨率重建方法. 电力系统保护与控制. 2025(02): 89-99 .
    2. 徐浙君. 基于优化深度学习的低照度图像超分辨率重建方法的研究. 科技通报. 2024(04): 39-43+53 .

    Other cited types(2)

Catalog

    Article views (189) PDF downloads (50) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return