YAN Danzhao, CHEN Jing, LAN Wangyao, LIAO Yipeng. Non-contact Diagnosis of Cable Joint Insulation Deterioration Based on Deep Learning Surface Temperature[J]. Infrared Technology , 2024, 46(6): 712-721.
Citation: YAN Danzhao, CHEN Jing, LAN Wangyao, LIAO Yipeng. Non-contact Diagnosis of Cable Joint Insulation Deterioration Based on Deep Learning Surface Temperature[J]. Infrared Technology , 2024, 46(6): 712-721.

Non-contact Diagnosis of Cable Joint Insulation Deterioration Based on Deep Learning Surface Temperature

More Information
  • Received Date: June 23, 2023
  • Revised Date: September 18, 2023
  • Available Online: June 23, 2024
  • To improve the efficiency and accuracy of the field diagnosis of insulation layer deterioration of the cable intermediate joint, a non-contact diagnosis method based on adaptive deep learning of surface temperature is proposed. First, infrared thermal imaging was performed on the insulating surface of the cable joint and cables at both ends. The surface temperatures of multiple symmetric areas on both sides of the center of the cable joint and cables at both ends were collected without contact. Subsequently, a deep learning network based on a two-hidden autoencoder extreme learning machine was constructed to mine the deep hidden features in the surface temperature data. The extracted deep hidden features were used as input to the random forest diagnosis model. A quantum rotation gate with a nonlinear dynamic adaptive rotation angle was further proposed to improve the update strategy of the quantum firework algorithm and optimize the parameters of the diagnostic model. Finally, by combining the infrared temperature of the joint surface and loss angle tangent value of the insulating medium, a dataset was constructed to train and test the diagnostic model in the field. The experimental results show that the improved quantum fireworks algorithm can better approximate the global optimal solution and has high convergence efficiency. The deep learning random forest diagnostic model exhibited strong feature extraction and classification capabilities, whereby the classification accuracy and stability of the diagnostic model were effectively improved after parameter optimization, and better diagnostic results were achieved under the condition of a small sample training set. Therefore, noncontact diagnosis of joint insulation deterioration is achievable.

  • [1]
    曹培, 徐鹏, 高凯, 等. 基于边缘计算的电缆接头运行状态智能传感与监测[J]. 高压电器, 2020, 56(9): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202009004.htm

    CAO Pei, XU Peng, GAO Kai, et al. Intelligent sensing and monitoring of cable joints' state based on edge computing[J]. High Voltage Apparatus, 2020, 56(9): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GYDQ202009004.htm
    [2]
    揭青松, 杨庆, 崔浩楠, 等. 基于暂态电压传递特性的电缆接头绝缘状态检测方法[J]. 高电压技术, 2022, 48(3): 1124-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202203033.htm

    JIE Qingsong, YANG Qing, CUI Haonan, et al. Insulation state detection method of cable joint based on transient voltage transfer characteristics[J]. High Voltage Engineering, 2022, 48(3): 1124-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202203033.htm
    [3]
    聂永杰, 赵现平, 李盛涛. XLPE电缆状态监测与绝缘诊断研究进展[J]. 高电压技术, 2020, 46(4): 1361-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202004029.htm

    NIE Yongjie, ZHAO Xianping, LI Shengtao. Research progress in condition monitoring and insulation diagnosis of XLPE cable[J]. High Voltage Engineering, 2020, 46(4): 1361-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202004029.htm
    [4]
    陈浩, 徐阳, 钱森, 等. 分布式光纤超声传感器用于检测电缆接头放电故障[J]. 光学学报, 2020, 41(3): 0306001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202103003.htm

    CHEN Hao, XU Yang, QIAN Sen, et al. Distributed fiber-optic ultrasonic sensor applied in detection on discharging fault of power cable joint[J]. Acta Optica Sinica, 2020, 41(3): 0306001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202103003.htm
    [5]
    LI L L, YONG J, XU W. On-line cable condition monitoring using natural power disturbances[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1242-1250. DOI: 10.1109/TPWRD.2018.2879964
    [6]
    高云鹏, 谭甜源, 刘开培, 等. 电缆接头温度反演及故障诊断研究[J]. 高电压技术, 2016, 42(2): 535-542. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201602027.htm

    GAO Yunpeng, TAN Tianyuan, LIU Kaipei, et al. Research on temperature retrieval and fault diagnosis of cable joint[J]. High Voltage Engineering, 2016, 42(2): 535-542. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201602027.htm
    [7]
    古亮, 赵阿琴. 基于ZigBee的电缆接头温度在线监测系统设计[J]. 传感器与微系统, 2019, 38(6): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201906033.htm

    GU Liang, ZHAO Aqin. Design of on-line temperature monitoring system for cable connector based on ZigBee technology[J]. Transducer and Microsystem Technologies, 2019, 38(6): 115-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201906033.htm
    [8]
    邓志飞, 鲍光海. 基于超高频RFID技术的电缆接头温度在线监测系统[J]. 仪表技术与传感器, 2021(7): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202107014.htm

    DENG Zhifei, BAO Guanghai. Online monitoring system of cable joint temperature based on UHF RFID technology[J]. Instrument Technique and Sensor, 2021(7): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202107014.htm
    [9]
    何宁辉, 周秀, 马波, 等. 基于神经网络和温度特性曲线的电缆故障率估计[J]. 电力科学与技术学报, 2022, 37(4): 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDL202204019.htm

    HE Ninghui, ZHOU Xiu, MA Bo, et al. Cable failure rate estimation based on neural network and temperature characteristic curve[J]. Journal of Eiectric Power Science and Technology, 2022, 37(4): 169-174. https://www.cnki.com.cn/Article/CJFDTOTAL-CSDL202204019.htm
    [10]
    HE B L, HUANG Y, YE T, et al. Temperature prediction of power cable joint based on PSO-LSSVM predict model[J]. Electric Power Engineering Technology, 2019, 38(1): 31-35.
    [11]
    曾庆煜. 基于机器学习的配网电力电缆接头温度预测及预警研究[D]. 南昌: 南昌大学, 2021.

    ZENG Qingyu. Research on Prediction and early warning of Power cable joint temperature in Distribution Network based on Machine learning [D]. Nanchang: Nanchang University, 2021.
    [12]
    李胜辉, 白雪, 董鹤楠, 等. 基于平稳小波变换与随机森林的电缆早期故障识别方法[J]. 电工电能新技术, 2020, 39(3): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN202003006.htm

    LI Shenghui, BAI Xue, DONG Henan, et al. Cable incipient fault identification based on stationary wavelet transform and random forest[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(3): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DGDN202003006.htm
    [13]
    徐四勤, 黄向前, 杨昆, 等. 基于温度以及运行数据的电缆接头绝缘劣化状态预测[J]. 计算机科学, 2022, 49(10): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202210017.htm

    XU Siqin, HUANG Xiangqian, YANG Kun, et al. Prediction of insulation deterioration state of cable joint based on temperature and running data[J]. Computer Science, 2022, 49(10): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202210017.htm
    [14]
    CHENG Y S, ZHAO D W, WANG Y B, et al. Multi-label learning with kernel extreme learning machine autoencoder[J]. Knowledge-Based Systems, 2019, 178: 1-10.
    [15]
    廖一鹏, 杨洁洁, 王志刚, 等. 基于双模态卷积神经网络自适应迁移学习的浮选工况识别[J]. 光子学报, 2020, 49(10): 1015001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202010020.htm

    LIAO Yipeng, YANG Jiejie, WANG Zhigang, et al. Flotation performance recognition based on dual-modality convolutional neural network adaptive transfer learning[J]. Acta Photonica Sinica, 2020, 49(10): 1015001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202010020.htm
    [16]
    段礼祥, 刘子旺, 赵振兴, 等. 基于区域对比和随机森林的设备故障红外图像敏感区域提取[J]. 红外技术, 2020, 42(10): 988-993. http://hwjs.nvir.cn/cn/article/id/hwjs202010012

    DUAN Lixiang, LIU Ziwang, ZHAO Zhenxin, et al. Infrared image roi extraction based on region contrast and random forest[J]. Infrared Technology, 2020, 42(10): 988-993. http://hwjs.nvir.cn/cn/article/id/hwjs202010012
    [17]
    TKACHUK V. Quantum genetic algorithm based on qutrits and its application[J]. Mathematical Problems in Engineering, 2018(4): 8614073.
    [18]
    GAO Y J, ZHANG F M, ZHAO Y, et al. A novel quantum-inspired binary wolf pack algorithm for difficult knapsack problem[J]. International Journal of Wireless and Mobile Computing, 2019, 16(3): 222-232.
    [19]
    YU S J, ZHU J P, CHUN F. A quantum annealing bat algorithm for node localization in wireless sensor networks[J]. Sensors, 2023, 23(2): 782-793.
    [20]
    王坤, 刘沛伦, 王力. 基于FFWA的自适应Canny飞机蒙皮红外图像边缘检测[J]. 红外技术, 2021, 43(5): 443-454. http://hwjs.nvir.cn/cn/article/id/552e4afd-1c02-4e20-9023-b11bc6b0c05b

    WANG Kun, LIU Peilun, WANG Li. Infrared image adaptive Canny edge-detection of aircraft skin based on fast fireworks algorithm[J]. Infrared Technology, 2021, 43(5): 443-454. http://hwjs.nvir.cn/cn/article/id/552e4afd-1c02-4e20-9023-b11bc6b0c05b
    [21]
    林剑萍, 廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合[J]. 光学精密工程, 2021, 29(6): 1406-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202106021.htm

    LIN Jianping, LIAO Yipeng. A novel image fusion method with fractional saliency detection and QFWA in NSST[J]. Optics and Precision Engineering, 2021, 29(6): 1406-1419. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202106021.htm
    [22]
    XU Z N, HU Z W, Zhao L J, et al. Application of temperature field modeling in monitoring of optic-electric composite submarine cable with insulation degradation[J]. Measurement, 2019, 133: 479-494.
    [23]
    王耀祥, 田维坚, 章兴龙, 等. 纤维光锥有效透过率的理论分析[J]. 光子学报, 2005, 34(4): 529-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB20050400C.htm

    WANG Yaoxiang, TIAN Weijian, ZHANG Xinglong, et al. Theoretical analysis of the effective transmission about fiber taper[J]. Acta Photonica Sinica, 2005, 34(4): 529-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB20050400C.htm
    [24]
    王耀祥, 田维坚, 黄琨, 等. 光锥与CCD耦合效率的理论分析[J]. 光子学报, 2004, 33(3): 318. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200403016.htm

    WANG Yaoxiang, TIAN Weijian, HUANG Kun, et al. Theoretical analysis of the coupling efficient between fiber taper and CCD[J]. Acta Photonica Sinica, 2004, 33(3): 318. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200403016.htm
    [25]
    李晓峰, 李莉, 邓华斌, 等. 光纤面板及光锥传像特性研究(英文)[J]. 红外技术, 2014, 36(8): 617-623. http://hwjs.nvir.cn/cn/article/id/hwjs201408003

    LI Xiaofeng, LI Li, DENG Huabin, et al. Study on light transmission characteristics of fiber optic faceplate and fiber optic taper[J]. Infrared Technology, 2014, 36(8): 617-623. http://hwjs.nvir.cn/cn/article/id/hwjs201408003
    [26]
    辛福学. ICCD的光纤耦合技术[J]. 红外与激光工程, 2001(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507033.htm

    XIN Fuxue. Optical fiber coupling technique of ICCD[J]. Infrared and Laser Engineering, 2001(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507033.htm
    [27]
    Smith A W. Textured fiber optic coupled image intensified camera: U. S. Patent 9, 201, 193[P]. 2015-12-1.
    [28]
    DU Y, HUANG Y, JIAO P, et al. Coupling resolution of tapered optical fiber array and CCD[C]//Ninth Symposium on Novel Photoelectronic Detection Technology and Applications of SPIE, 2023, 12617: 2002-2008.
    [29]
    何欢. 距离选通ICCD及其控制电路设计与实现[D]. 中国科学院研究生院(西安光学精密机械研究所), 2015.

    HE Huan, Design for a Range-Gated ICCD and Its Control Circuit[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2015.
  • Related Articles

    [1]DENG Changzheng, LIU Mingze, FU Tian, GONG Mengqing, LUO Bingjie. Infrared Image Recognition of Substation Equipment Based on Improved YOLOv7-Tiny Algorithm[J]. Infrared Technology , 2025, 47(1): 44-51.
    [2]WANG Chongwen, PENG Tinghai, LUO Rui, LIU Jian, YANG Yuping, WANG Shijin, YAN Tingyu, GE Fan, LIU Yanfang, LIU Yunhong. Tropical Marine Environmental Adaptability of Germanium Coated Infrared Antireflection Film[J]. Infrared Technology , 2024, 46(8): 957-964.
    [3]ZHOU Huikui, ZHANG Li, HU Sujuan. Underwater Image Enhancement Based on Improved Histogram Matching and Adaptive Equalization[J]. Infrared Technology , 2024, 46(5): 532-538.
    [4]YANG Yuping, LIU Jian, ZHOU Xiaoyu, ZHAO Hongkun, LIU Yanfang, WANG Chongwen, ZHAO Yuanrong, GE Fan, XIAO Jianjun, LUO Rui, YANG Pinjie. Environmental Adaptability of Infrared Antireflection Films in Humid Hot Rain Forest[J]. Infrared Technology , 2021, 43(12): 1197-1201.
    [5]TANG Changming, ZHONG Jianfeng, ZHONG Shuncong, CHEN Man, FU Xibin, HUANG Xuebin. Ultrasound Infrared Thermography Defect Recognition Based on Improved Adaptive Genetic Algorithm with Two-Dimensional Maximum Entropy[J]. Infrared Technology , 2020, 42(8): 801-808.
    [6]WANG Chongwen, ZHAO Hongkun, LIU Jian, WANG Qiaofang, ZHU Guangyu, YANG Yuping, LUO Rui, ZHAO Yuanrong, LI Wei, LIU Yanfang, GE Fan. Dissecting the Adaptability of OLED Displays in Tropical Rainforest[J]. Infrared Technology , 2020, 42(6): 542-546.
    [7]JING Weiguo, SUN Mingzhao, LI Yongtao. Novel Experimental Method of Intense Light Adaptability of Night Vision Systems with Large Dynamic Range[J]. Infrared Technology , 2019, 41(7): 689-692.
    [8]LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61.
    [9]Improved Adaptive Segmentation Non-uniformity Correction Method for IRFPA[J]. Infrared Technology , 2017, 39(3): 209-213.
    [10]ZHANG Jin-cheng, LIAO Shou-yi, ZHANG Zuo-yu, SU De-lun, YAN Xun-liang. Real-time Improvement for Resistor Array Nonuniformity Correction[J]. Infrared Technology , 2015, 37(11): 921-925.
  • Cited by

    Periodical cited type(18)

    1. 田超华,赵欢,黄鸿基,孙伟可,王学峰. 基于深度学习的配电网开关柜电晕放电检测设计. 电子设计工程. 2025(01): 51-54+60 .
    2. 韩勇勇. 基于小波变换的PSO优化紫外双通道图像融合研究. 中国照明电器. 2025(02): 95-102 .
    3. 刘俊,王鲸,周炎生. 综合消磁工作线圈电缆接头击穿故障分析及应对策略. 广东造船. 2025(01): 59-62 .
    4. 朱杰,冯新颖,许网俊,范佳佳,杨赟. 基于YOLOV3神经网络的轨道车辆局部放电缺陷检测方法. 电工技术. 2025(03): 194-196 .
    5. 江澎,康正军,陈涛,冯一飞,吴琼. 融合人工智能与无线通信的热成像局放检测技术研究. 长江信息通信. 2024(01): 152-154 .
    6. 赵昊然,陆智勇,江明,刘立石. 小波包能量谱和神经网络的开关柜局部放电自动检测方法. 自动化与仪表. 2024(02): 92-96 .
    7. 汪可夫,胡志祥. 预制舱式变电站负荷支路漏电监测方法设计. 自动化仪表. 2024(07): 55-59+69 .
    8. 江熠,金坤鹏,钱锡颖,任一舟. 基于局部放电测试技术的避雷器状态诊断方法研究. 计算机测量与控制. 2024(07): 36-43 .
    9. 章铖. 基于红外热成像的变电站支柱绝缘子缺陷自动检测方法. 自动化技术与应用. 2024(08): 16-19+45 .
    10. 邵钦禹. 电力电缆的带电诊断与故障处理技术分析. 集成电路应用. 2024(09): 368-369 .
    11. 刘秀婷,李烨,高峰,马味敏. 高压电缆局部放电检测及识别系统研究. 电子测量技术. 2024(17): 97-107 .
    12. 胡梦捷. 基于非接触式测温技术的光伏直流侧拉弧线缆发热监测. 电线电缆. 2024(06): 31-34 .
    13. 韩勇勇,宋鹏,刘成涛. 基于ZYNQ 7020的双通道紫外放电检测系统设计. 国外电子测量技术. 2024(12): 115-120 .
    14. 苗堃,陈垒,李沛东,赵亚军,李健,郑城市,张胜利. 基于涡流技术的高压电缆铅封缺陷识别仿真研究. 环境技术. 2023(02): 139-145 .
    15. 龙丽名. 低压电线电缆检测手段及质量控制研究. 科技资讯. 2023(11): 42-45 .
    16. 何维晟,吴照国,徐扬,杜茂春,王谦,李勇,石钧仁. 高压电缆终端局部放电超声信号传输特性仿真分析. 高压电器. 2023(11): 48-55+64 .
    17. 刘杰,夏彦卫,贾伯岩,吴国强,殷庆栋. 基于高精度温度传感器的多股碳纤维导线潜伏性缺陷检测方法. 电子测量与仪器学报. 2023(11): 65-71 .
    18. 焦宇阳,段海南,张宏军,郑福建,朱进,刘新. 一种基于相关性分析和模糊规则的高压电缆状态评价方法. 电力大数据. 2022(10): 53-61 .

    Other cited types(11)

Catalog

    Article views (43) PDF downloads (14) Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return