LOU Zhehang, LUO Suyun. Vehicle Infrared Target Detection Based on YOLOX and Swin Transformer[J]. Infrared Technology , 2022, 44(11): 1167-1175.
Citation: LOU Zhehang, LUO Suyun. Vehicle Infrared Target Detection Based on YOLOX and Swin Transformer[J]. Infrared Technology , 2022, 44(11): 1167-1175.

Vehicle Infrared Target Detection Based on YOLOX and Swin Transformer

More Information
  • Received Date: June 09, 2022
  • Revised Date: August 09, 2022
  • Owing to the problems of high noise and poor contrast in infrared images, the accuracy of target detection is easily reduced. Here, an improved YOLOX model combined with YOLOX and a Swin Transformer is proposed. To improve the feature extraction ability, reduce the activation functions and standardization layers of the neck and head parts in YOLOX, and optimize the network structure, the Swin Transformer is used to replace the CSPDarknet backbone extraction network in YOLOX. This study tests the improved model on both the InfiRay and FILR datasets. The obtained experimental results indicate that the improved YOLOX network has significantly improved the average detection accuracy on both datasets and is more suitable for infrared image target detection.
  • [1]
    Caniou J. Passive Infrared Detection: Theory and Applications[M]. Springer Science & Business Media, 2013.
    [2]
    任章, 李露, 蒋宏. 基于红外图像序列的运动目标检测算法研究[J]. 红外与激光工程, 2007, 36(9): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2007S2032.htm

    REN Zhang, LI Lu, JIANG Hong Research on moving target detection algorithm based on infrared image sequence[J]. Infrared and Laser Engineering, 2007, 36(9): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2007S2032.htm
    [3]
    吴燕茹, 程咏梅, 赵永强. 利用KPCA特征提取的Adaboost红外标检测[J]. 红外与激光工程, 2011, 40(2): 338-343. DOI: 10.3969/j.issn.1007-2276.2011.02.032

    WU Yanru, CHENG Yongmei, ZHAO Yongqiang. Adaboost infrared target detection using KPCA feature extraction[J]. Infrared and Laser Engineering, 2011, 40(2): 338-343. DOI: 10.3969/j.issn.1007-2276.2011.02.032
    [4]
    陈炳文. 特定视场中红外成像目标检测关键技术研究[D]. 武汉: 武汉大学, 2013.

    CHEN Bingwen. Research on Key Technologies of Infrared Imaging Target Detection in Specific Field of View[D] Wuhan: Wuhan University, 2013.
    [5]
    James W Davis, Vinay Sharma. Robust background-subtraction for person detection in thermal imagery[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004: 1-8.
    [6]
    Ei Baf Fida, Bouwmans Thierry, Vachon Bertrand. Fuzzy foreground detection for infrared video[C]//IEEE Computer society Conference on Computer Vision and Pattern Recognition, 2008: 1-6.
    [7]
    于杰. 基于红外摄像机的夜间场景监控方法研究与实现[D]. 北京: 北京邮电大学, 2013.

    YU Jie. Research and Implementation of Night Scene Monitoring Method Based on Infrared Camera[D]. Beijing: Beijing University of Posts and Telecommunications, 2013.
    [8]
    易诗, 聂焱, 张洋溢, 等. 基于红外热成像与YOLOv3的夜间目标识别方法[J]. 红外技术, 2019, 41(10): 970-975. http://hwjs.nvir.cn/article/id/hwjs201910013

    YI Shi, NIE Yan, ZHANG Yangyi, et al. Night target recognition method based on infrared thermal imaging and YOLOv3[J]. Infrared Technology, 2019, 41(10): 970-975. http://hwjs.nvir.cn/article/id/hwjs201910013
    [9]
    聂霆. 基于红外图像的前方车辆识别与车距检测[D]. 西安: 西安电子科技大学, 2015.

    NIE Ting. Forward Vehicle Recognition and Distance Detection Based on Infrared Image[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2015.
    [10]
    陈谧. 基于深度学习的红外目标检测方法研究与实现[D]. 成都: 电子科技大学, 2021.

    CHEN Mi. Research and Implementation of Infrared Target Detection Method Based on Depth Learning[D]. Chengdu: University of Electronic Science and Technology, 2021.
    [11]
    舒朗, 张智杰, 雷波. 一种针对红外目标检测的Dense-Yolov5算法研究[J]. 光学与光电技术, 2021, 19(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202101010.htm

    SHU Lang, ZHANG Zhijie, LEI Bo. Research on Dense-Yolov5 algorithm for infrared target detection[J]. Optics and Optoelectronics, 2021, 19(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202101010.htm
    [12]
    LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[J/OL]. arXiv Preprint arXiv, 2103.14030.
    [13]
    GE Z, LIU S, WANG F, et al. Yolox: Exceeding yolo seriesin[J/OL]. arXiv Preprint arXiv, 2107.08430.
    [14]
    Redmon J, Farhadi A. YOLO V3: an incremental improvement[J/OL]. arXiv Preprint arXiv, 1804.02767.
    [15]
    Bochkovskiy A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv Preprint arXiv, 2004.10934.
    [16]
    ZHUANG L, Hanzi M, CHAO Yuan W, et al. A ConvNet for the 2020s[J/OL]. arXiv Preprint arXiv, 2201.03545.
    [17]
    王周春, 崔文楠, 张涛. 基于支持向量机的长波红外目标分类识别算法[J]. 红外技术, 2021, 43(2): 153-161. http://hwjs.nvir.cn/article/id/73b78f5d-26f5-4da8-8b5c-93aa7a7a40e2

    WANG Zhouchun, CUI Wennan, ZHANG Tao. Long wave infrared target classification and recognition algorithm based on support vector machine [J]. Infrared Technology, 2021, 43(2): 153-161. http://hwjs.nvir.cn/article/id/73b78f5d-26f5-4da8-8b5c-93aa7a7a40e2
    [18]
    Inf iray. Double light vehicle scene database[EB/OL]. [2022-04-02]. http://iray.iraytek.com:7813/apply/Double_light_vehicle.html/.
    [19]
    Flir. FLIR Thermal Data Set[EB/OL]. [2022-04-02]. https://www.flir.com/oem/adas/adas-dataset-form/.
    [20]
    张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程, 2020, 47(10): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010010.htm

    ZHANG Ruzhen, ZHANG Jianlin, QI Xiaoping, et al. Infrared target detection in complex scenes[J]. Optoelectronic Engineering, 2020, 47(10): 128-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010010.htm
    [21]
    张鹏辉, 刘志, 郑建勇, 等. 面向嵌入式系统的复杂场景红外目标实时检测算法[J]. 光子学报, 2022, 51(2): 203-212. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202202021.htm

    ZHANG Penghui, LIU Zhi, ZHENG Jianyong, et al. Real time infrared target detection algorithm for embedded systems in complex scenes[J]. Acta Photonica Sinica, 2022, 51(2): 203-212. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202202021.htm
    [22]
    宋甜, 李颖, 王静. 改进YOLOv5s的车载红外图像目标检测[J]. 现代计算机, 2022, 28(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS202202003.htm

    SONG Tian, LI Ying, WANG Jing. Improved vehicle infrared image target detection of YOLOv5s[J]. Modern Computer, 2022, 28(2): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJS202202003.htm
  • Related Articles

    [1]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [2]LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713.
    [3]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [4]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [5]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [6]YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221.
    [7]LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664.
    [8]JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77.
    [9]LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61.
    [10]FAN Ming-zhe, WANG Lu-ping, ZHANG Lu-ping. Regional Detection Algorithm Based on Double Error Reconstruction[J]. Infrared Technology , 2015, 37(11): 962-969.
  • Cited by

    Periodical cited type(3)

    1. 靳铁柱,刘生彦. 改进背景减法下人体运动模糊图像检测仿真. 计算机仿真. 2025(03): 304-308 .
    2. 王封疆,王梦飞,周杰. 基于CHEBWO的多目标棉田图像增强算法. 石河子大学学报(自然科学版). 2024(04): 505-513 .
    3. 张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return