ZHANG Zhichao, ZUO Leipeng, ZOU Jie, ZHAO Yaomin, SONG Yangfan. Segmentation Method of Substation Equipment Infrared Image Based on Multimodal Image Information[J]. Infrared Technology , 2023, 45(11): 1198-1206.
Citation: ZHANG Zhichao, ZUO Leipeng, ZOU Jie, ZHAO Yaomin, SONG Yangfan. Segmentation Method of Substation Equipment Infrared Image Based on Multimodal Image Information[J]. Infrared Technology , 2023, 45(11): 1198-1206.

Segmentation Method of Substation Equipment Infrared Image Based on Multimodal Image Information

More Information
  • Received Date: March 22, 2022
  • Revised Date: June 10, 2022
  • The segmentation accuracy of substation equipment in infrared images captured by a UAV directly affects the results of thermal fault diagnosis. We proposed a multimodal path aggregation network (MPAN) that fuses visible and infrared images to address the problem of low segmentation accuracy of substation equipment in complex infrared backgrounds. First, we extracted and fused the features of two modal images, and considering the differences in the feature space of the two modal images, we proposed the adaptive feature fuse module (AFFM) to fuse the two modal features fully. We added a bottom-up pyramid network to the backbone with multi-scale features and a laterally connected path enhancement. Finally, we used dice coefficients to optimize the mask loss function. The experimental results showed that the fusion of multimodal images can enhance the segmentation performance and verify the effectiveness of the proposed modules, which can significantly improve the accuracy of the segmentation of substation equipment instances in infrared images.
  • [1]
    李莉, 熊炜, 陆冬梅, 等. 输变电设施可靠性评估中设备故障率预测方法研究[J]. 电测与仪表, 2015, 52(3): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201503008.htm

    LI Li, XIONG Wei, LU Dongmei, et al. Study on the prediction method for failure rate in the reliability evaluation of power transmission and transformation facility[J]. Electrical Measurement & Instrumentation, 2015, 52(3): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201503008.htm
    [2]
    裴少通, 刘云鹏, 陈同凡, 等. 基于BOA-SVM的劣化绝缘子红外图谱诊断方法[J]. 电测与仪表, 2018, 55(24): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201824003.htm

    PEI Shaotong, LIU Yunpeng, CHEN Tongfan, et al. Infrared spectrum diagnosis method of deteriorated insulators based on BOA-SVM[J]. Electrical Measurement & Instrumentation, 2018, 55(24): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ201824003.htm
    [3]
    陈铁, 吕长钦, 张欣, 等. 基于KPCA-WPA-SVM的变压器故障诊断模型[J]. 电测与仪表, 2021, 58(4): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202104023.htm

    CHEN Tie, LYU Changqin, ZHANG Xin, et al. Transformer fault diagnosis model based on KPCA-WPA-SVM[J]. Electrical Measurement & Instrumentation, 2021, 58(4): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202104023.htm
    [4]
    Furse C M, Kafal M, Razzaghi R, et al. Fault diagnosis for electrical systems and power networks: A review[J]. IEEE Sensors Journal, 2020, 21(2): 888-906.
    [5]
    Ferreira V H, Zanghi R, Fortes M Z, et al. A survey on intelligent system application to fault diagnosis in electric power system transmission lines[J]. Electric Power Systems Research, 2016, 136: 135-153. DOI: 10.1016/j.epsr.2016.02.002
    [6]
    王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004

    WANG Xiaofang, MAO Huamin. Infrared image segmentation method for power equipment in complex background[J]. Infrared Technology, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
    [7]
    王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020, 41(5): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB202005013.htm

    WANG Xiaofei, HU Fankui, HUANG Shuo. Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering[J]. Journal on Communications, 2020, 41(5): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB202005013.htm
    [8]
    冯振新, 许晓路, 周东国, 等. 基于局部区域聚类的电力设备故障区域提取方法[J]. 电测与仪表, 2020, 57(8): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202008008.htm

    FENG Zhenxin, XU Xiaolu, Zhou Dongguo, et al. Extraction method of power device fault region based on local clustering algorithm[J]. Electrical Measurement & Instrumentation, 2020, 57(8): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202008008.htm
    [9]
    刘云鹏, 张喆, 裴少通, 等. 基于深度学习的红外图像中劣化绝缘子片的分割方法[J]. 电测与仪表, 2022, 59(9): 63-68, 118. Doi: 10.19753/j.issn1001-1390.2022.09.009.

    LIU Yunpeng, ZHANG Zhe, PEI Shaotong, et al. Faulty insulator segmentation method in infrared image based on deep learning[J]. Electrical Measurement & Instrumentation, 2022, 59(9): 63-68, 118. Doi: 10.19753/j.issn1001-1390.2022.09.009.
    [10]
    吴克河, 王敏鉴, 李渊博. 基于Mask R-CNN的电力设备红外图像分割技术研究[J]. 计算机与数字工程, 2020, 48(2): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG202306005.htm

    WU Kehe, WANG Minjian, LI Yuanbo. Research on infrared image segmentation technology of power equipment based on Mask R-CNN[J]. Computer & Digital Engineering, 2020, 48(2): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG202306005.htm
    [11]
    李文璞, 毛颖科, 廖逍, 等. 基于旋转目标检测的变电设备红外图像电压致热型缺陷智能诊断方法[J]. 高电压技术, 2021, 47(9): 3246-3253. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202109022.htm

    LI Wenpu, MAO Yingke, LIAO Xiao, et al. Intelligent diagnosis method of infrared image for substation equipment voltage type thermal defects based on rotating target detection[J]. High Voltage Engineering, 2021, 47(9): 3246-3253. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202109022.htm
    [12]
    BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[J/OL]. Computer Vision and Pattern Recognition, 2019, https://arxiv.org/abs/1904.02689 2019: 1904-2689.
    [13]
    田乐, 王欢. 引入独立融合分支的双模态语义分割网络[J]. 计算机工程, 2022, 48(8): 240-248, 257. Doi: 10.19678/j.issn.1000-3428.0062066.

    TIAN Le, WANG Huan. Dual-modal semantical segmentation network by involving independent fusion branch[J]. Computer Engineering, 2022, 48(8): 240-248, 257. Doi: 10.19678/j.issn.1000-3428.0062066.
    [14]
    CHEN L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848
    [15]
    LIN T, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 936-944, Doi: 10.1109/CVPR.2017.106.
    [16]
    胡志伟, 杨华, 娄甜田. 采用双重注意力特征金字塔网络检测群养生猪[J]. 农业工程学报, 2021, 37(5): 166-174. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202105019.htm

    HU Zhiwei, YANG Hua, LOU Tiantian. Instance detection of group breeding pigs using a pyramid network with dual attention feature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 166-174. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202105019.htm
    [17]
    CHENG B, Girshick R, Dollár P, et al. Boundary IoU: improving object-centric image segmentation evaluation[J/OL]. Computer Vision and Pattern Recognition, 2021: 2103-16562. https://arxiv.org/abs/2103.16562.
  • Related Articles

    [1]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [2]DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764.
    [3]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [4]HE Le, LI Zhongwei, LUO Cai, REN Peng, SUI Hao. Infrared and Visible Image Fusion Based on Dilated Convolution and Dual Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 732-738.
    [5]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [6]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [7]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [8]HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology , 2023, 45(2): 143-149.
    [9]CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.
    [10]WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
  • Cited by

    Periodical cited type(1)

    1. 杨晓超,郝慧良. 矿用电缆放电监测系统研究设计. 中国煤炭. 2024(S1): 406-410 .

    Other cited types(0)

Catalog

    Article views (127) PDF downloads (34) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return