CHANG Cheng, QIAN Fuli, GOU Guoru, TANG Rui, WANG Tilu, GAO Sibo, ZHANG Weichenxi, HE Yangyang, LI Li, YANG Qiming, ZHANG Jie, LIU Yingqi, DUAN Yu, YANG Wenyun, WANG Guanghua. Development of Highly Efficient Tandem White OLEDs[J]. Infrared Technology , 2023, 45(11): 1141-1152.
Citation: CHANG Cheng, QIAN Fuli, GOU Guoru, TANG Rui, WANG Tilu, GAO Sibo, ZHANG Weichenxi, HE Yangyang, LI Li, YANG Qiming, ZHANG Jie, LIU Yingqi, DUAN Yu, YANG Wenyun, WANG Guanghua. Development of Highly Efficient Tandem White OLEDs[J]. Infrared Technology , 2023, 45(11): 1141-1152.

Development of Highly Efficient Tandem White OLEDs

More Information
  • Received Date: May 30, 2023
  • Revised Date: September 19, 2023
  • Tandem white OLEDs offer low power consumption, high brightness, and a high color gamut. However, the material and electrical structures of tandem white OLEDs still need to be optimized owing to the outstanding challenges in efficiency, lifetime, and driving voltage. In this study, we focused on the latest research on tandem white OLEDs and summarized the problems in engineering preparation and non-destructive detection method of 3 types of CGLs for high-efficiency tandem white OLEDs. We focused on the latest research on the "all-phosphorescent system, " "harvesting excitons via two parallel channels, " and the "mixed-phosphorescent-TADF system" simultaneously. We summarized the device lifetime problems and discussed structural solutions such as "graded doping" and "four-color mixed-phosphorescent-TADF system." From the aspect of CGL materials and structures in different systems, we reviewed the scheme of lower driving voltage for tandem white OLEDs. Finally, we provided suggestions for improving the materials and structures of tandem white OLEDs.
  • [1]
    LIU B, XU M, TAO H, et al. Highly efficient red phosphorescent organic light-emitting diodes based on solution processed emissive layer[J]. Journal of Luminescence, 2013, 142: 35-39. DOI: 10.1016/j.jlumin.2013.03.032
    [2]
    XIANG C, KOO W, SO F, et al. A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices[J]. Light: Science & Applications, 2013, 2(6): e74-e74.
    [3]
    Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293): 539-541. DOI: 10.1038/347539a0
    [4]
    YANG X, ZHOU G, WONG W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chemical Society Reviews, 2015, 44(23): 8484-8575. DOI: 10.1039/C5CS00424A
    [5]
    Jou J H, Kumar S, Agrawal A, et al. Approaches for fabricating high efficiency organic light emitting diodes[J]. Journal of Materials Chemistry C, 2015, 3(13): 2974-3002. DOI: 10.1039/C4TC02495H
    [6]
    FAN C, YANG C. Yellow/orange emissive heavy-metal complexes as phosphors in monochromatic and white organic light-emitting devices[J]. Chemical Society Reviews, 2014, 43(17): 6439-6469. DOI: 10.1039/C4CS00110A
    [7]
    XIAO P, HUANG J, YU Y, et al. Recent developments in tandem white organic light-emitting diodes[J]. Molecules, 2019, 24(1): 151. DOI: 10.3390/molecules24010151
    [8]
    Bernanose A, Comte M, Vouaux P. A new method of emission of light by certain organic compounds[J]. Journal of Chemical Physics, 1953, 50: 64-68.
    [9]
    Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals[J]. Journal of Chemical Physics, 1963, 38(8): 2042-2043. DOI: 10.1063/1.1733929
    [10]
    TANG C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12): 913-915. DOI: 10.1063/1.98799
    [11]
    Madhava Rao M V, Kuin Su Y, HUANG T S, et al. White organic light emitting devices based on multiple emissive nanolayers[J]. Nano-Micro Letters, 2010, 2: 242-246. DOI: 10.1007/BF03353850
    [12]
    Eslamian M. Inorganic and organic solution-processed thin film devices[J]. Nano-Micro Letters, 2017, 9(1): 3. DOI: 10.1007/s40820-016-0106-4
    [13]
    Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234-238. DOI: 10.1038/nature11687
    [14]
    LIU B, LI X L, TAO H, et al. Manipulation of exciton distribution for high-performance fluorescent/phosphorescent hybrid white organic light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(31): 7668-7683. DOI: 10.1039/C7TC01477E
    [15]
    Tyan Y S. Organic light-emitting-diode lighting overview[J]. Journal of Photonics for Energy, 2011, 1(1): 011009-011009. DOI: 10.1117/1.3529412
    [16]
    LIU B Q, GAO D Y, WANG J B, et al. Progress of white organic light-emitting diodes[J]. Acta Physico-Chimica Sinica, 2015, 31(10): 1823-1852. DOI: 10.3866/PKU.WHXB201506192
    [17]
    陈金鑫, 黄孝文. OLED有机电致发光材料与器件[M]. 北京: 清华大学出版社, 2007.

    CHEN J X, HUANG X W. OLED Organic Electroluminescent Materials and Devices[M]. Beijing: Tsinghua University Press, 2007.
    [18]
    应根裕, 胡文波, 邱勇. 平板显示技术[M]. 北京: 人民邮电出版社, 2002.

    YING G Y, HU W B, QIU Y. Flat Panel Display Technology[M]. Beijing: People's Posts and Telecommunications Publishing House, 2002.
    [19]
    付相杰. 电荷产生层厚度对叠层式白光OLED性能影响的研究[D]. 上海: 上海交通大学, 2015.

    FU X J. Study of the Effect of Charge-Generating Layer Thickness on the Performance of Stacked White OLEDs[D]. Shanghai: Shanghai Jiao Tong University, 2015.
    [20]
    KO Y W, CHUNG C H, LEE J H, et al. Efficient white organic light emission by single emitting layer[J]. Thin Solid Films, 2003, 426(1-2): 246-249. DOI: 10.1016/S0040-6090(03)00007-5
    [21]
    Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244): 234-238. DOI: 10.1038/nature08003
    [22]
    Kido J. High performance OLEDs for displays and general lighting[J]. SID Symposium Digest of Technical Papers, 2008, 39(1): 931-932. DOI: 10.1889/1.3069828
    [23]
    Burrows P E, Khalfin V, GU G, et al. Control of microcavity effects in full color stacked organic light emitting devices[J]. Applied Physics Letters, 1998, 73(4): 435-437. DOI: 10.1063/1.121891
    [24]
    Nowatari H, Ushikubo T, Ohsawa N, et al. Intermediate connector with suppressed voltage loss for white tandem OLEDS[C]//SID Symposium Digest of Technical Papers, 2009, 40(1): 899-902.
    [25]
    Kido J, Matsumoto T, Nakada T, et al. High efficiency organic el devices having charge generation layers[C]//SID Symposium Digest of Technical Papers, 2003, 34(1): 964-965.
    [26]
    PU Y J, Chiba T, Ideta K, et al. Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes[J]. Advanced Materials, 2015, 27(8): 1327-1332. DOI: 10.1002/adma.201403973
    [27]
    YU J, YIN Y, LIU W, et al. Effect of the greenish-yellow emission on the color rendering index of white organic light-emitting devices[J]. Organic Electronics, 2014, 15(11): 2817-2821. DOI: 10.1016/j.orgel.2014.08.016
    [28]
    LI X L, OUYANG X, LIU M, et al. Highly efficient single-and multi-emission-layer fluorescent/phosphorescent hybrid white organic light-emitting diodes with 20% external quantum efficiency[J]. Journal of Materials Chemistry C, 2015, 3(35): 9233-9239. DOI: 10.1039/C5TC02050F
    [29]
    Kim D Y, Park J H, Lee J W, et al. Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission[J]. Light: Science & Applications, 2015, 4(4): e263-e263.
    [30]
    XIAO P, HUANG J, DONG T, et al. Room-temperature fabricated thin-film transistors based on compounds with lanthanum and main family element boron[J]. Molecules, 2018, 23(6): 1373. DOI: 10.3390/molecules23061373
    [31]
    LIU B, XU Z, ZOU J, et al. High-performance hybrid white organic light-emitting diodes employing p-type interlayers[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 240-244. DOI: 10.1016/j.jiec.2014.12.040
    [32]
    CHEN Y, MA D. Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency[J]. Journal of Materials Chemistry, 2012, 22(36): 18718-18734. DOI: 10.1039/c2jm32246c
    [33]
    Hwang S H. Stable blue thermally activated delayed fluorescent organic light-emitting diodes with three times longer lifetime than phosphorescent organic light-emitting diodes[J]. Advanced Materials, 2015, 27(15): 2515-2520. DOI: 10.1002/adma.201500267
    [34]
    SHI Z, LI Y, LI S, et al. Localized surface plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based on coaxial core/shell heterojunction architecture[J]. Advanced Functional Materials, 2018, 28(20): 1707031. DOI: 10.1002/adfm.201707031
    [35]
    XIAO P, HUANG J, YU Y, et al. Recent advances of exciplex-based white organic light-emitting diodes[J]. Applied Sciences, 2018, 8(9): 1449. DOI: 10.3390/app8091449
    [36]
    LIU B, XU M, WANG L, et al. Investigation and optimization of each organic layer: a simple but effective approach towards achieving high-efficiency hybrid white organic light-emitting diodes[J]. Organic Electronics, 2014, 15(4): 926-936. DOI: 10.1016/j.orgel.2014.02.005
    [37]
    LIU B, XU M, WANG L, et al. Comprehensive study on the electron transport layer in blue flourescent organic light-emitting diodes[J]. ECS Journal of Solid State Science and Technology, 2013, 2(11): R258-R261. DOI: 10.1149/2.034311jss
    [38]
    LIU B, XU M, WANG L, et al. Simplified hybrid white organic light-emitting diodes with efficiency/efficiency roll-off/color rendering index/color-stability trade-off[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(8): 719-723. DOI: 10.1002/pssr.201409179
    [39]
    DU X, TAO S, HUANG Y, et al. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off[J]. Applied Physics Letters, 2015, 107(18): 183304. DOI: 10.1063/1.4935457
    [40]
    CHEN Y H, MA D G, SUN H D, et al. Organic semiconductor heterojunctions: electrode-independent charge injectors for high-performance organic light-emitting diodes[J]. Light: Science & Applications, 2016, 5(3): e16042-e16042.
    [41]
    JIANG C, LIU H, LIU B, et al. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers[J]. Organic Electronics, 2016, 31: 82-89. DOI: 10.1016/j.orgel.2016.01.009
    [42]
    SUN H, CHEN Y, CHEN J, et al. Interconnectors in tandem organic light emitting diodes and their influence on device performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 22(1): 154-163.
    [43]
    SUN J X, ZHU X L, PENG H J, et al. Effective intermediate layers for highly efficient stacked organic light-emitting devices[J]. Applied Physics Letters, 2005, 87(9): 093504. DOI: 10.1063/1.2035320
    [44]
    ZHAO D W, SUN X W, JIANG C Y, et al. Efficient tandem organic solar cells with an Al/MoO3 intermediate layer[J]. Applied Physics Letters, 2008, 93(8): 313.
    [45]
    ZHANG H, DAI Y, MA D, et al. High efficiency tandem organic light-emitting devices with Al∕WO3∕Au interconnecting layer[J]. Applied Physics Letters, 2007, 91(12): 123504. DOI: 10.1063/1.2787877
    [46]
    ZHANG H M, Choy W C H, DAI Y F. Independently controllable stacked OLEDs with high efficiency by using semitransparent Al/WO3/Ag intermediate connecting layer[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 105108. DOI: 10.1088/0022-3727/41/10/105108
    [47]
    ZHANG H M, Choy W C H. Real-time color-tunable electroluminescence from stacked organic LEDs using independently addressable middle electrode[J]. IEEE Photonics Technology Letters, 2008, 20(13): 1154-1156. DOI: 10.1109/LPT.2008.925190
    [48]
    ZHANG H M, Choy W C H, DAI Y F, et al. The structural composite effect of Au–WO3–Al interconnecting electrode on performance of each unit in stacked OLEDs[J]. Organic Electronics, 2009, 10(3): 402-407. DOI: 10.1016/j.orgel.2009.01.001
    [49]
    Knauer K A, Najafabadi E, Haske W, et al. Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes on glass and flexible glass substrates[J]. Organic Electronics, 2013, 14(10): 2418-2423. DOI: 10.1016/j.orgel.2013.06.004
    [50]
    Chiba T, Pu Y J, Miyazaki R, et al. Ultra-high efficiency by multiple emission from stacked organic light-emitting devices[J]. Organic Electronics, 2011, 12(4): 710-715. DOI: 10.1016/j.orgel.2011.01.022
    [51]
    JIAO B, WU Z, YANG Z, et al. Tandem organic light-emitting diodes with an effective nondoped charge-generation unit[J]. Physica Status Solidi (a), 2013, 210(12): 2583-2587. DOI: 10.1002/pssa.201330119
    [52]
    Meyer J, Kröger M, Hamwi S, et al. Charge generation layers comprising transition metal-oxide/organic interfaces: Electronic structure and charge generation mechanism[J]. Applied Physics Letters, 2010, 96(19): 193302. DOI: 10.1063/1.3427430
    [53]
    Sasabe H, Minamoto K, Pu Y J, et al. Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%[J]. Organic Electronics, 2012, 13(11): 2615-2619. DOI: 10.1016/j.orgel.2012.07.019
    [54]
    CHEN Y, CHEN J, MA D, et al. Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes[J]. Journal of Applied Physics, 2011, 110(7): 074504. DOI: 10.1063/1.3644970
    [55]
    CHEN Y, CHEN J, MA D, et al. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer[J]. Applied Physics Letters, 2011, 98(24): 43309-43309.
    [56]
    Burrows P E, Forrest S R, Sibley S P, et al. Color-tunable organic light-emitting devices[J]. Applied Physics Letters, 1996, 69(20): 2959-2961. DOI: 10.1063/1.117743
    [57]
    GU G, Parthasarathy G, TIAN P, et al. Transparent stacked organic light emitting devices. Ⅱ. Device performance and applications to displays[J]. Journal of Applied Physics, 1999, 86(8): 4076-4084. DOI: 10.1063/1.371428
    [58]
    Matsumoto T, Nakada T, Endo J, et al. Multiphoton organic EL device having charge generation layer[J]. SID Symposium Digest of Technical Papers, 2003, 34(1): 979-981. DOI: 10.1889/1.1832449
    [59]
    Tsutsui T, Terai M. Electric field-assisted bipolar charge spouting in organic thin-film diodes[J]. Applied Physics Letters, 2004, 84(3): 440-442. DOI: 10.1063/1.1640470
    [60]
    Terai M, Fujita K, Tsutsui T. Capacitance measurement in organic thin-film device with internal charge separation zone[J]. Japanese Journal of Applied Physics, 2005, 44(8L): L1059-L1062. DOI: 10.1143/JJAP.44.L1059
    [61]
    GUO F, MA D. White organic light-emitting diodes based on tandem structures[J]. Applied Physics Letters, 2005, 87(17): 173510-173510-3. DOI: 10.1063/1.2120898
    [62]
    CHANG C C, CHEN J F, HWANG S W, et al. Highly efficient white organic electroluminescent devices based on tandem architecture[J]. Applied Physics Letters, 2005, 87(25): 253501. DOI: 10.1063/1.2147730
    [63]
    CHANG C C, HWANG S W, CHEN C H, et al. High-efficiency organic electroluminescent device with multiple emitting units[J]. Japanese Journal of Applied Physics, 2004, 43(9A): 6418-6422.
    [64]
    Kanno H, Holmes R J, Sun Y, et al. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer[J]. Advanced Materials, 2006, 18(3): 339-342. DOI: 10.1002/adma.200501915
    [65]
    CHAN M Y, LAI S L, LAU K M, et al. Influences of connecting unit architecture on the performance of tandem organic light-emitting devices[J]. Advanced Functional Materials, 2007, 17(14): 2509-2514. DOI: 10.1002/adfm.200600642
    [66]
    LIAO L S, Slusarek W K, Hatwar T K, et al. Tandem organic light‐emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector[J]. Advanced Materials, 2008, 20(2): 324-329. DOI: 10.1002/adma.200700454
    [67]
    BAO Q Y, YANG J P, TANG J X, et al. Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes[J]. Organic Electronics, 2010, 11(9): 1578-1583. DOI: 10.1016/j.orgel.2010.07.009
    [68]
    LIAO L S, Klubek K P. Power efficiency improvement in a tandem organic light-emitting diode[J]. Applied Physics Letters, 2008, 92: 223311. DOI: 10.1063/1.2938269
    [69]
    LIAO L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes[J]. Applied Physics Letters, 2004, 84(2): 167-169. DOI: 10.1063/1.1638624
    [70]
    CHO T Y, LIN C L, WU C C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency[J]. Applied Physics Letters, 2006, 88(11): 111106. DOI: 10.1063/1.2185077
    [71]
    Kröger M, Hamwi S, Meyer J, et al. Temperature-independent field-induced charge separation at doped organic/organic interfaces: Experimental modeling of electrical properties[J]. Physical Review B, 2007, 75(23): 235321. DOI: 10.1103/PhysRevB.75.235321
    [72]
    Leem D S, Lee J H, Kim J J, et al. Highly efficient tandem p-i-n organic light-emitting diodes adopting a low temperature evaporated rhenium oxide interconnecting layer[J]. Applied Physics Letters, 2008, 93(10): 103304. DOI: 10.1063/1.2979706
    [73]
    YANG J P, BAO Q Y, XIAO Y, et al. Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping[J]. Organic Electronics, 2012, 13(11): 2243-2249. DOI: 10.1016/j.orgel.2012.06.037
    [74]
    CHAN M Y, LAI S L, FUNG M K, et al. Efficient CsF/Yb/Ag cathodes for organic light-emitting devices[J]. Applied Physics Letters, 2003, 82(11): 1784-1786. DOI: 10.1063/1.1561579
    [75]
    TANG J X, FUNG M K, LEE C S, et al. Interface studies of intermediate connectors and their roles in tandem OLEDs[J]. Journal of Materials Chemistry, 2010, 20(13): 2539-2548. DOI: 10.1039/B921699E
    [76]
    TANG J X, LAU K M, LEE C S, et al. Substrate effects on the electronic properties of an organic/organic heterojunction[J]. Applied Physics Letters, 2006, 88(23): 232103. DOI: 10.1063/1.2209212
    [77]
    Parthasarathy G, Shen C, Kahn A, et al. Lithium doping of semiconducting organic charge transport materials[J]. Journal of Applied Physics, 2001, 89(9): 4986-4992. DOI: 10.1063/1.1359161
    [78]
    Garrido J A, Nowy S, Haertl A, et al. The diamond/aqueous electrolyte interface: an impedance investigation[J]. Langmuir, 2008, 24(8): 3897-3904. DOI: 10.1021/la703413y
    [79]
    CHEN Y Y, Tsai C T, HUANG W L, et al. Investigation and optimization of the charge generation layer (CGL) in tandem OLEDs using Taguchi's orthogonal arrays and nondestructive capacitance-voltage (CV) measurements[J]. Synthetic Metals, 2021, 274: 116713. DOI: 10.1016/j.synthmet.2021.116713
    [80]
    LIU J, CHEN Y, QIN D, et al. Improved interconnecting structure for a tandem organic light emitting diode[J]. Semiconductor Science and Technology, 2011, 26(9): 095011. DOI: 10.1088/0268-1242/26/9/095011
    [81]
    Diez C, Reusch T C G, Lang E, et al. Highly stable charge generation layers using caesium phosphate as n-dopants and inserting interlayers[J]. Journal of Applied Physics, 2012, 111(10): 103107. DOI: 10.1063/1.4720064
    [82]
    LIU B, XU M, WANG L, et al. Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: The key role of concentration in single dopant host–guest systems[J]. Organic Electronics, 2014, 15(10): 2616-2623. DOI: 10.1016/j.orgel.2014.07.033
    [83]
    LIU B, ZOU J, SU Y, et al. Hybrid white organic light emitting diodes with low efficiency roll-off, stable color and extreme brightness[J]. Journal of Luminescence, 2014, 151: 161-164. DOI: 10.1016/j.jlumin.2014.02.022
    [84]
    LUO D, XIAO Y, HAO M, et al. Doping-free white organic light-emitting diodes without blue molecular emitter: An unexplored approach to achieve high performance via exciplex emission[J]. Applied Physics Letters, 2017, 110(6): 061105. DOI: 10.1063/1.4975480
    [85]
    CHEN B, LIU B, ZENG J, et al. Efficient bipolar blue AIEgens for high-performance nondoped blue OLEDs and hybrid white OLEDs[J]. Advanced Functional Materials, 2018, 28(40): 1803369. DOI: 10.1002/adfm.201803369
    [86]
    Chapran M, Angioni E, Findlay N J, et al. An ambipolar BODIPY derivative for a white exciplex OLED and cholesteric liquid crystal laser toward multifunctional devices[J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4750-4757.
    [87]
    LIU B, Delikanli S, Gao Y, et al. Nanocrystal light-emitting diodes based on type Ⅱ nanoplatelets[J]. Nano Energy, 2018, 47: 115-122. DOI: 10.1016/j.nanoen.2018.02.004
    [88]
    Cekaviciute M, Simokaitiene J, Volyniuk D, et al. Arylfluorenyl-substituted metoxytriphenylamines as deep blue exciplex forming bipolar semiconductors for white and blue organic light emitting diodes[J]. Dyes and Pigments, 2017, 140: 187-202. DOI: 10.1016/j.dyepig.2017.01.023
    [89]
    HUANG Q, Walzer K, Pfeiffer M, et al. Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers[J]. Applied Physics Letters, 2006, 88(11): 113515. DOI: 10.1063/1.2185468
    [90]
    YOUN W, LEE J, XU M, et al. Corrugated sapphire substrates for organic light-emitting diode light extraction[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 8974-8978.
    [91]
    Yokoyama M, Su S H, Hou C C, et al. Highly efficient white organic light-emitting diodes with a p–i–n tandem structure[J]. Japanese Journal of Applied Physics, 2011, 50(4S): 04DK06. DOI: 10.7567/JJAP.50.04DK06
    [92]
    Ho M H, Chen T M, Yeh P C, et al. Highly efficient p-i-n white organic light emitting devices with tandem structure[J]. Applied Physics Letters, 2007, 91(23): 233507. DOI: 10.1063/1.2822398
    [93]
    CHEN S, ZHAO X, WU Q, et al. Efficient, color-stable flexible white top-emitting organic light-emitting diodes[J]. Organic Electronics, 2013, 14(11): 3037-3045. DOI: 10.1016/j.orgel.2013.09.004
    [94]
    SU S J, Gonmori E, Sasabe H, et al. Highly efficient organic blue‐and white‐light‐emitting devices having a carrier‐and exciton-confining structure for reduced efficiency roll-off[J]. Advanced Materials, 2008, 20(21): 4189-4194.
    [95]
    ZHU L, WU Z, CHEN J, et al. Reduced efficiency roll-off in all-phosphorescent white organic light-emitting diodes with an external quantum efficiency of over 20%[J]. Journal of Materials Chemistry C, 2015, 3(14): 3304-3310. DOI: 10.1039/C5TC00205B
    [96]
    XU L, TANG C W, Rothberg L J. High efficiency phosphorescent white organic light-emitting diodes with an ultra-thin red and green co-doped layer and dual blue emitting layers[J]. Organic Electronics, 2016, 32: 54-58. DOI: 10.1016/j.orgel.2016.02.010
    [97]
    WANG Q, DING J, MA D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission‐mechanism analysis[J]. Advanced Functional Materials, 2009, 19(1): 84-95. DOI: 10.1002/adfm.200800918
    [98]
    WANG Q, DING J, ZHANG Z, et al. A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer[J]. Journal of Applied Physics, 2009, 105: 076101. DOI: 10.1063/1.3106051
    [99]
    LEE S, SHIN H, KIM J J. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles[J]. Advanced Materials, 2014, 26(33): 5864-5868. DOI: 10.1002/adma.201400330
    [100]
    XUE K, HAN G, DUAN Y, et al. Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability[J]. Organic Electronics, 2015, 18: 84-88. DOI: 10.1016/j.orgel.2015.01.016
    [101]
    XUE K, SHENG R, DUAN Y, et al. Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers[J]. Organic Electronics, 2015, 26: 451-457. DOI: 10.1016/j.orgel.2015.08.017
    [102]
    Fleetham T, LI G, LI J. Phosphorescent Pt (Ⅱ) and Pd (Ⅱ) complexes for efficient, high-color-quality, and stable OLEDs[J]. Advanced Materials, 2017, 29(5): 1601861. DOI: 10.1002/adma.201601861
    [103]
    Coburn C, Jeong C, Forrest S R. Reliable, all-phosphorescent stacked white organic light emitting devices with a high color rendering index[J]. ACS Photonics, 2018, 5(2): 630-635. DOI: 10.1021/acsphotonics.7b01213
    [104]
    ZHANG Y, LEE J, Forrest S R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes[J]. Nature Communications, 2014, 5(1): 5008-5015. DOI: 10.1038/ncomms6008
    [105]
    LEE J, Jeong C, Batagoda T, et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes[J]. Nature Communications, 2017, 8(1): 15566. DOI: 10.1038/ncomms15566
    [106]
    Rajamalli P, Senthilkumar N, Gandeepan P, et al. A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes[J]. Journal of the American Chemical Society, 2016, 138(2): 628-634. DOI: 10.1021/jacs.5b10950
    [107]
    YANG Z, MAO Z, XIE Z, et al. Recent advances in organic thermally activated delayed fluorescence materials[J]. Chemical Society Reviews, 2017, 46(3): 915-1016. DOI: 10.1039/C6CS00368K
    [108]
    GUO J, LI X L, NIE H, et al. Achieving high-performance nondoped OLEDs with extremely small efficiency roll-off by combining aggregation-induced emission and thermally activated delayed fluorescence[J]. Advanced Functional Materials, 2017, 27(13): 1606458. DOI: 10.1002/adfm.201606458
    [109]
    WU Z, WANG Q, YU L, et al. Managing excitons and charges for high-performance fluorescent white organic light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28780-28788.
    [110]
    WANG J, CHEN J, QIAO X, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10093-10097.
    [111]
    Goushi K, Yoshida K, Sato K, et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion[J]. Nature Photonics, 2012, 6(4): 253-258. DOI: 10.1038/nphoton.2012.31
    [112]
    ZHANG D, CAI M, ZHANG Y, et al. Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability[J]. Materials Horizons, 2016, 3(2): 145-151. DOI: 10.1039/C5MH00258C
    [113]
    ZHAO B, ZHANG T, CHU B, et al. Highly efficient tandem full exciplex orange and warm white OLEDs based on thermally activated delayed fluorescence mechanism[J]. Organic Electronics, 2015, 17: 15-21. DOI: 10.1016/j.orgel.2014.11.014
    [114]
    DUAN Y, SUN F, YANG D, et al. White-light electroluminescent organic devices based on efficient energy harvesting of singlet and triplet excited states using blue-light exciplex[J]. Applied Physics Express, 2014, 7(5): 052102. DOI: 10.7567/APEX.7.052102
    [115]
    Park Y S, KIM K H, KIM J J. Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes[J]. Applied Physics Letters, 2013, 102(15): 153306. DOI: 10.1063/1.4802716
    [116]
    SHI C, SUN N, WU Z, et al. High performance hybrid tandem white organic light-emitting diodes by using a novel intermediate connector[J]. Journal of Materials Chemistry C, 2018, 6(4): 767-772. DOI: 10.1039/C7TC05082H
    [117]
    DU X, ZHAO J, YUAN S, et al. High-performance fluorescent/phosphorescent (F/P) hybrid white OLEDs consisting of a yellowish-green phosphorescent emitter[J]. Journal of Materials Chemistry C, 2016, 4(25): 5907-5913. DOI: 10.1039/C6TC01421F
    [118]
    CHEN Y, YANG D, QIAO X, et al. Novel strategy to improve the efficiency roll-off at high luminance and operational lifetime of hybrid white OLEDs via employing an assistant layer with triplet–triplet annihilation up-conversion characteristics[J]. Journal of Materials Chemistry C, 2020, 8(19): 6577-6586. DOI: 10.1039/D0TC00867B
    [119]
    ZHANG D, DUAN L, LI Y, et al. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence[J]. Journal of Materials Chemistry C, 2014, 2(38): 8191-8197. DOI: 10.1039/C4TC01289E
    [120]
    WU Z, LUO J, SUN N, et al. High-performance hybrid white organic light-emitting diodes with superior efficiency/color rendering index/color stability and low efficiency roll-off based on a blue thermally activated delayed fluorescent emitter[J]. Advanced Functional Materials, 2016, 26(19): 3306-3313. DOI: 10.1002/adfm.201505602
    [121]
    HUANG C, XIE Y, WU S, et al. Thermally activated delayed fluorescence-based tandem OLEDs with very high external quantum efficiency[J]. Physica Status Solidi (a), 2017, 214(10): 1700240. DOI: 10.1002/pssa.201700240
    [122]
    HUANG C, ZHANG Y, ZHOU J, et al. Hybrid tandem white OLED with long lifetime and 150 lm⋅W−1 in luminous efficacy based on TADF blue emitter stabilized with phosphorescent red emitter[J]. Advanced Optical Materials, 2020, 8(18): 2000727. DOI: 10.1002/adom.202000727
  • Related Articles

    [1]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [2]DI Jing, LIANG Chan, REN Li, GUO Wenqing, LIAN Jing. Infrared and Visible Image Fusion Based on Multi-Scale Contrast Enhancement and Cross-Dimensional Interactive Attention Mechanism[J]. Infrared Technology , 2024, 46(7): 754-764.
    [3]ZHAO Songpu, YANG Liping, ZHAO Xin, PENG Zhiyuan, LIANG Dongxing, LIANG Hongjun. Object Detection in Visible Light and Infrared Images Based on Adaptive Attention Mechanism[J]. Infrared Technology , 2024, 46(4): 443-451.
    [4]HE Le, LI Zhongwei, LUO Cai, REN Peng, SUI Hao. Infrared and Visible Image Fusion Based on Dilated Convolution and Dual Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 732-738.
    [5]CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648.
    [6]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [7]WANG Tianyuan, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Self-attention Learning[J]. Infrared Technology , 2023, 45(2): 171-177.
    [8]HUANG Linglin, LI Qiang, LU Jinzheng, HE Xianzhen, PENG Bo. Infrared and Visible Image Fusion Based on Multi-scale and Attention Model[J]. Infrared Technology , 2023, 45(2): 143-149.
    [9]CHEN Da, HE Quancai, DI Erzhen, DENG Zaozhu. Application of Partial Differential Segmentation Model with Adaptive Weight in Infrared Image of Substation Equipment[J]. Infrared Technology , 2022, 44(2): 179-188.
    [10]WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178.
  • Cited by

    Periodical cited type(1)

    1. 杨晓超,郝慧良. 矿用电缆放电监测系统研究设计. 中国煤炭. 2024(S1): 406-410 .

    Other cited types(0)

Catalog

    Article views (186) PDF downloads (64) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return