SANG Xueyi, JI Yaping, ZHANG Wei, HONG Wenpeng, XIANG Jiajun. Research on Infrared Target Characteristics of the "Ali Burke" Class Destroyer[J]. Infrared Technology , 2024, 46(7): 807-814.
Citation: SANG Xueyi, JI Yaping, ZHANG Wei, HONG Wenpeng, XIANG Jiajun. Research on Infrared Target Characteristics of the "Ali Burke" Class Destroyer[J]. Infrared Technology , 2024, 46(7): 807-814.

Research on Infrared Target Characteristics of the "Ali Burke" Class Destroyer

More Information
  • Received Date: November 14, 2022
  • Revised Date: January 30, 2023
  • Available Online: July 24, 2024
  • In naval warfare, infrared missiles are important weapons for destroying targets. To effectively demonstrate the ability of infrared missiles to destroy targets, it is necessary to first obtain the infrared target characteristics of typical destroyers. Therefore, this study investigated the infrared target characteristics of "Ali Burke" class destroyers. A three-dimensional physical model of the "Ali Burke" class destroyer was established. The flow field characteristics and medium- and long-wave infrared radiation characteristics of the model in the cruise state were calculated via numerical simulations. The results indicate that the plume temperature of the target chimney of the military ship is as high as 688.5 K, and the temperature of the ship body is low and uniform. The medium-wave spectral radiation of ship targets is primarily contributed by high-temperature plumes, whereas the long-wave spectral radiation is primarily contributed by the normal-temperature ship body. In addition, the characteristics of medium- and long-wave spectral radiation are significantly affected by the observation angle. The maximum value of the medium-wave spectral radiation intensity is 65000 W/(sr·μm), and the highest value of the long-wave spectral radiation intensity, 18200 W/(sr·μm), is reached at the detection angle directly above.

  • [1]
    杨栋, 高德亮, 曹耀心, 等. 红外导引头抗诱饵干扰研究[J]. 飞控与探测, 2020, 3(3): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC202003011.htm

    YANG Dong, GAO Deliang, CAO Yuexin, et al. Research on anti-decoy interference of infrared seeker[J]. Flight Control and Detection, 2020, 3(3): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC202003011.htm
    [2]
    陈彬. 海面背景下舰船目标红外辐射特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    CHEN Bin. Research on Infrared Radiation Characteristics of Ship Targets against Sea Surface Background[D]. Harbin: Harbin Institute of Technology, 2015.
    [3]
    毛佳晨. 海洋背景下舰船目标的红外成像特征研究[D]. 西安: 西安电子科技大学, 2019.

    MAO Jiachen. Research on Infrared Imaging Characteristics of Ship Targets in Marine Background[D]. Xi'an: Xidian University, 2019.
    [4]
    张胜辉. 舰船目标红外中/长波特性分析与检测方法研究[D]. 长沙: 国防科学技术大学, 2015.

    ZHANG Shenghui. Analysis and Detection Methods of Infrared Medium/Long-wave Characteristics of Ship Targets[D]. Changsha: National University of Defense Technology, 2015.
    [5]
    庄亚平, 王建勋, 左超, 等. 舰船热尾流海面和大气传输红外辐射特性分析[J]. 船电技术, 2019, 39(7): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI201907019.htm

    ZHUANG Yaping, WANG Jianxun, ZUO Chao, et al. Analysis of infrared radiation characteristics of ship thermal wake transmitted by sea surface and atmosphere[J]. Ship Electric Technology, 2019, 39(7): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI201907019.htm
    [6]
    仇荣超, 娄树理, 李延军, 等. 多波段红外图像的海面舰船目标检测[J]. 光谱学与光谱分析, 2019, 39(3): 698-704. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201903007.htm

    QIU Rongchao, LOU Shuli, LI Yanjun, et al. Detection of ship targets on sea surface in multi-band infrared images[J]. Spectroscopy and Spectral Analysis, 2019, 39(3): 698-704. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201903007.htm
    [7]
    罗婷婷. 美国海军"阿利•伯克"Flight Ⅲ型驱逐舰解析[J]. 现代舰船, 2011, 4: 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJC201104015.htm

    LUO Tingting. Analysis of the USN arleigh burke class flight Ⅲ destroyer[J]. Modern Warships, 2011, 4: 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJC201104015.htm
    [8]
    周强. 美国海军"阿利•伯克"级"宙斯盾"驱逐舰[J]. 现代兵器, 2003, 8: 55. https://www.cnki.com.cn/Article/CJFDTOTAL-XDBQ200308016.htm

    ZHOU Qiang. The USN arleigh burke class aegis destroyer[J]. Modern Weapons, 2003, 8: 55. https://www.cnki.com.cn/Article/CJFDTOTAL-XDBQ200308016.htm
    [9]
    吴沿庆, 廖守亿, 张作宇, 等. 飞机发动机尾流流场数值模拟与红外特性计算[J]. 激光与红外, 2017, 47(11): 1380-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201711011.htm

    WU Yanqing, LIAO Shouyi, ZHANG Zuoyu, et al. Numerical simulation of flow field and infrared characteristic calculation of aircraft engine wake vortex[J]. Laser & Infrared, 2017, 47(11): 1380-1385. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201711011.htm
    [10]
    阮鸿雁, 吕建军, 杨波. 激光切割超音速喷嘴的流场特性[J]. 中国激光, 2009, 36(5): 1233-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200905043.htm

    RUAN Hongyan, LYU Jianjun, YANG Bo. Flow field characteristics of supersonic nozzles for laser cutting[J]. Chinese Journal of Lasers, 2009, 36(5): 1233-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ200905043.htm
    [11]
    刘滨, 洪文鹏, 王瑞芬, 等. 红外成像系统中带有距离修正的目标能量预测方法[J]. 飞控与探测, 2020, 3(2): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC202002008.htm

    LIU Bin, HONG Wenpeng, WANG Ruifeng, et al. Target energy prediction method with distance correction in infrared imaging system[J]. Flight Control and Detection, 2020, 3(2): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-FKTC202002008.htm
    [12]
    丁宣浩, 蔡如华. 光线方程的数值解与光线追迹[J]. 西南师范大学学报(自然科学版), 2005, 30(4): 667-671. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK200504017.htm

    DING Xuanhao, CAI Ruhua. Numerical solution of ray equation and ray tracing[J]. Journal of Southwest China Normal University (Natural Science Edition), 2005, 30(4): 667-671. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK200504017.htm
  • Related Articles

    [1]WANG Yi, WANG Hao, WEI Ziyu, WANG Xue. Test of Infrared Radiation Characteristic for Aero-engines Based on Spectral Radiometer[J]. Infrared Technology , 2023, 45(3): 292-297.
    [2]XI Jianhui, JIANG Han. Infrared Multispectral Radiation-Temperature Measurement Based on RBF Network[J]. Infrared Technology , 2020, 42(10): 963-968.
    [3]ZHANG Zhi-lin, SUN Wei-min, XING Jian, CUI Shuang-long. An Improved Algorithm Research on VIS-IR Multi-spectral Thermometry[J]. Infrared Technology , 2013, (8): 518-521.
    [4]The Engineering Arithmetic of the Reflected Infrared Radiation Characteristic for Air-target[J]. Infrared Technology , 2013, (5): 289-294.
    [5]Effects of Chip Location for Radiant Intensity Profiles of IREDs[J]. Infrared Technology , 2012, 34(7): 389-392. DOI: 10.3969/j.issn.1001-8891.2012.07.003
    [6]CHEN Shan, SUN Ji-yin, LUO Xiao-chun. Research of Target Surface Solar Radiation Characteristic[J]. Infrared Technology , 2011, 33(3): 147-150. DOI: 10.3969/j.issn.1001-8891.2011.03.005
    [7]BA Shu-hong, JIAO Qing-jie. Effects of the Small Amount of Addtive on Radiation Intensity of Flash Pyrotechnics Composition[J]. Infrared Technology , 2008, 30(6): 365-367. DOI: 10.3969/j.issn.1001-8891.2008.06.015
    [8]XIN Chun-suo, DAI Jing-min, WANG Ying-li. Development of optical Fiber Twenty-Spectral Radiation Pyrometer[J]. Infrared Technology , 2008, 30(1): 47-50. DOI: 10.3969/j.issn.1001-8891.2008.01.012
    [9]JIN Zhao, XIAO Peng, DAI Jing-Min. Development of a Broadband Infrared Grating Scan Spectral Radiometer[J]. Infrared Technology , 2005, 27(4): 343-346. DOI: 10.3969/j.issn.1001-8891.2005.04.018
    [10]WU Wei, WU Tao. A Review on Spectral Blue Shift of Thermal Radiator[J]. Infrared Technology , 2000, 22(4): 47-48. DOI: 10.3969/j.issn.1001-8891.2000.04.012

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return