Citation: | ZHAO Miaoyu, YAN Fang, LI Wenwen, LIU Yangshuo. Qualitative Identification of Terahertz Time-domain Spectra Based on Analytic Hierarchy Process[J]. Infrared Technology , 2025, 47(5): 656-661. |
Terahertz time-domain spectroscopy (THz-TDS) is a type of far-infrared spectroscopy that reflects the internal characteristics of substances and provides rich physical and chemical information. Therefore, terahertz waves can be used to qualitatively identify food additives containing nitrogen. Hierarchical analysis, originally developed for solving evaluation-type problems, is introduced in this study to the field of qualitative analysis of terahertz spectra. This paper proposes and evaluates a qualitative identification method that combines THz-TDS with hierarchical analysis. In this study, six nitrogen-containing food additives were selected as experimental samples. First, the acquired terahertz time-domain spectral data were preprocessed and transformed into four datasets: peak values, peak positions, peak numbers, and overall spectral trends. Next, the data were divided into comparison and test sets to construct a qualitative identification model incorporating hierarchical analysis, followed by parameter optimization. The results indicated that the qualitative identification accuracy of additives based on single factors: overall trend, peak value, peak position, and peak number were 80.23%, 70.93%, 67.44%, and 40.70%, respectively. The multi-factor hierarchical analysis-based method improved the identification accuracy to 92.44%. In addition, by binarizing the fuzzy characterization of the absorption spectrum data during preprocessing and using it as the basis for assessing overall trends, the recognition accuracy increased to 94.19% when combined with the hierarchical analysis model. These results demonstrate the effectiveness of the proposed qualitative identification algorithm. The method is straightforward, does not require training, and is well-suited for rapid qualitative detection of small sample sets.
[1] |
王芳, 张春红, 赵景峰, 等. 基于混合机器学习法的太赫兹波鉴别草种的研究[J]. 激光与光电子学进展, 2021, 58(3): 318-324.
WANG F, ZHANG C H, ZHAO J F, et al. Identification of a grass species using a terahertz wave based on hybrid machine learning method[J]. Laser & Optoelectronics Progress, 2021, 58(3): 318-324.
|
[2] |
胡晓华, 刘伟, 刘长虹, 等. 基于太赫兹光谱和支持向量机快速鉴别咖啡豆产地[J]. 农业工程学报, 2017, 33(9): 302-307.
HU X H, LIU W, LIU C H, et al. Rapid identification of producing area of coffee bean based on terahertz spectroscopy and support vector machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 302-307
|
[3] |
周博, 朱文魁, 王赵改, 等. 基于太赫兹时域光谱技术的烟草组分识别[J]. 农业工程学报, 2022, 38(10): 310-316. DOI: 10.11975/j.issn.1002-6819.2022.10.037
ZHOU B, ZHU W K, WANG Z G, et al. Identification of tobacco materials based on terahertz time-domain spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 310-316. DOI: 10.11975/j.issn.1002-6819.2022.10.037
|
[4] |
崔向伟, 沈韬, 刘英莉, 等. 小样本太赫兹光谱识别[J]. 激光与光电子学进展, 2021, 58(1): 321-328.
CUI X W, SHEN T, LIU Y L, et al. Recognition of small-sample terahertz spectrum[J]. Laser & Optoelectronics Progress, 2021, 58(1): 321-328.
|
[5] |
甘岚, 沈鸿飞, 王瑶, 等. 基于改进DCGAN的数据增强方法[J]. 计算机应用, 2021, 41(5): 1305-1313.
GAN L, SHEN H F, WANG Y, et al. Data augmentation method based onimproved deep convolutional generative adversarial networks[J]. Journal of Computer Applications, 2021, 41(5): 1305-1313.
|
[6] |
吴建. 以案例教学为核心的适应性学习系统的设计与实现[D]. 杭州: 浙江工业大学, 2009.
WU Jian. The design and implementation of case-based learning in adaptive learning[D]. Hangzhou: Zhejiang University of Technology, 2009.
|
[7] |
郑凤翥, 宁飞, 王惠林, 等. 光电系统伺服稳定平台可靠性定性分析[J]. 应用光学, 2022, 43(5): 853-858.
ZHEN F Z, NING F, WANG H L, et al. Qualitative analysis of reliability on servo stabilizationplatform of electro-optical system[J]. Journal of Applied Optics, 2022, 43(5): 853-858.
|
[8] |
燕芳, 刘同华, 张俊林. 糖类同分异构体的太赫兹吸收峰形成机理研究[J]. 光学学报, 2022, 42(5): 228-234.
YAN F, LIU T H, ZHANG J L. Formation mechanism of terahertz absorption peaks of carbohydrate isomers[J]. Acta Optica Sinica, 2022, 42(5): 228-234.
|
[9] |
Dorney T D, Baraniuk R G, Daniel M, etal. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 2001, 18(7): 1562.
|
[10] |
Duvillare L, Garet F, Coutaz J L, etal. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 39.
|
1. |
许霄霄,张昕,姚强,朱佳祥,王昕. 基于灰狼自适应阈值分割和改进模糊增强的红外图像NSCT增强算法. 电测与仪表. 2024(01): 46-51 .
![]() | |
2. |
王振,刘磊. 融合彩色模型空间的电力设备红外图像增强. 红外技术. 2024(02): 225-232 .
![]() | |
3. |
刘志坚,陶韵旭,刘航,罗灵琳,张德春,何蔚. 融合残差密集与生成对抗网络的红外巡检图像超分辨率重建. 昆明理工大学学报(自然科学版). 2023(05): 120-129 .
![]() | |
4. |
杨小龙,马超,姚陶,李静,栾士江. 基于可见光图像的变压器缺陷识别技术研究. 变压器. 2022(02): 13-18 .
![]() | |
5. |
康辉,杨庆江,冯新宇,李亚妮,刘晓磊. 基于融合算法的电力设备红外图像增强. 黑龙江科技大学学报. 2022(04): 545-549+562 .
![]() | |
6. |
隋宇,宁平凡,牛萍娟,王辰羽,赵地,张伟龙,韩抒真,梁立君,薛高建,崔颜军. 面向架空输电线路的挂载无人机电力巡检技术研究综述. 电网技术. 2021(09): 3636-3648 .
![]() | |
7. |
吴雪琼,孙保华,马洲俊. 配电网设备感知热像的自适应多阈值分割研究. 电力信息与通信技术. 2021(09): 70-76 .
![]() | |
8. |
裴璐,杜浩,黄照贺,黄焕强,吴钊铭. 基于红外检测的电力设备运行风险智能诊断. 电力设备管理. 2020(09): 121-122+132 .
![]() | |
9. |
陈静. 可见光图像检测方法在牵引变电设备故障诊断中的应用. 电气化铁道. 2020(S2): 87-89+94 .
![]() | |
10. |
缪希仁,刘志颖,鄢齐晨. 无人机输电线路智能巡检技术综述. 福州大学学报(自然科学版). 2020(02): 198-209 .
![]() | |
11. |
王小芳,康琛,程宏波,曾晗,辛建波,纪清照. 基于红外图像处理的变电设备热故障自动诊断方法. 华东交通大学学报. 2019(03): 111-118 .
![]() | |
12. |
王小芳,毛华敏. 一种复杂背景下的电力设备红外图像分割方法. 红外技术. 2019(12): 1111-1116 .
![]() |