ZOU Qianjin, ZHANG Hengwei, WANG Dong, LIU Xiaohu, TIAN Zhuangzhuang. Analysis of Calibration Method and Occasion of Ground-based Infrared Imaging Equipments with Different FOVs[J]. Infrared Technology , 2023, 45(11): 1236-1241.
Citation: ZOU Qianjin, ZHANG Hengwei, WANG Dong, LIU Xiaohu, TIAN Zhuangzhuang. Analysis of Calibration Method and Occasion of Ground-based Infrared Imaging Equipments with Different FOVs[J]. Infrared Technology , 2023, 45(11): 1236-1241.

Analysis of Calibration Method and Occasion of Ground-based Infrared Imaging Equipments with Different FOVs

More Information
  • Received Date: June 09, 2022
  • Revised Date: July 19, 2022
  • We can use the infrared radiation characteristics of a target for target recognition. Data on infrared radiation characteristics obtained by out-field infrared imaging equipment is significant in evaluating early warning, reconnaissance, and stealth effects. It is difficult to obtain the response coefficients of out-field infrared imaging equipment. We introduced and compared radiometric calibration methods using a collimator and an extended-area blackbody. We conducted experiments using different calibration methods and then provided response coefficients of the out-field infrared imaging equipment. The long-distance radiometric calibration results showed different response coefficients at different distances. An infrared imaging system conducted calibration experiments with different working times and fusions. The radiometric out-of-focus calibration results showed that diffusion is not the main factor influencing calibration. Calibration experiments for different working times also showed that the response coefficients remained unchanged. The factors affecting the radiometric calibration of the out-field infrared imaging equipment are environmental radiation, path radiation, and path transmission. Short-distance radiometric calibration using an extended-area blackbody is necessary to obtain the response coefficients of the out-field infrared imaging equipment. If the radiometric calibration distance is less than 10 m, the error between the short- and long-distance radiometric calibrations is approximately 5%. This research helps out-field radiometric calibration of ground-based infrared imaging equipment and designs a radiometric calibration–measuring system.
  • [1]
    马宏宾. 红外图像中的目标识别研究[D]. 北京: 北京理工大学, 2021: 15-25.

    MA H B. Research on Object Recognition in Infrared Images[D]. Beijing: Beijing Institute of Technology, 2021: 15-25.
    [2]
    金璐. 少样本条件下的红外空中目标识别与检测技术研究[D]. 上海: 中国科学院大学上海技术物理研究所, 2021: 20-35.

    JIN L. Research on Key Technologies of Infrared Aerial Target Recognition and Detection with Few Shots [D]. Shanghai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, 2021: 20-35.
    [3]
    马骏, 温茂星, 周峰. 基于长波红外的高空飞机蒙皮辐射测量方法研究[J]. 红外技术, 2021, 43(3): 284-291. http://hwjs.nvir.cn/article/id/6cef9386-a688-4521-b5d1-27a4691f081c

    MA J, WEN M X, ZHOU F. Skin radiation measurement method of high altitude aircraft based on long wave infrared light[J]. Infrared Technology, 2021, 43(3): 284-291. http://hwjs.nvir.cn/article/id/6cef9386-a688-4521-b5d1-27a4691f081c
    [4]
    陈超帅. 红外面阵搜索系统快速扫描成像像移补偿技术研究与实现[D]. 上海: 中国科学院大学上海技术物理研究所, 2018: 22-26.

    CHEN C S. Technical Research and Implementation on Image Motion Compensation of Infrared Array Search System by Fast Scan Imaging [D]. Shanghai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, 2018: 22-26.
    [5]
    李宁, 张云峰, 刘春香, 等. 1 m口径红外测量系统的辐射定标[J]. 光学精密工程, 2015, 22(8): 2254-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408011.htm

    LI N, ZHANG Y F, LIU C X. Calibration of 1 m aperture infrared theodolite[J]. Optics and Precision Engineering, 2015, 22(8): 2254-2260. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201408011.htm
    [6]
    孙志远, 常松涛, 朱玮, 等. 应用内外定标修正实现红外测量系统辐射定标[J]. 光学精密工程, 2015, 23(2): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201502006.htm

    SUN Z Y, CHANG S T, ZHU W, et al. Radiation calibration of infrared system by amendment of inner and outer calibrations [J]. Optics and Precision Engineering, 2015, 23(2): 356-362. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201502006.htm
    [7]
    孙志远, 常松涛, 朱玮. 中波红外探测器辐射定标的简化方法[J]. 红外与激光工程, 2014, 43(7): 2132-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201407017.htm

    SUN Z Y, CHANG S T, ZHU W. Simplifying method of radiance calibration for MWIR detector[J]. Infrared and Laser Engineering, 2014, 43(7): 2132-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201407017.htm
    [8]
    陆子凤. 红外热像仪的辐射定标和测温误差分析[D]. 长春: 长春光学精密机械与物理研究所, 2009: 20-30.

    LU Z F. Calibration and the Measurement Error Analysis of Infrared Imaging System for Temperature Measurement[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, 2009: 20-30.
    [9]
    韩光宇, 曹立华, 张文豹. 地基目标光学辐射特性测量系统设计[J]. 红外与激光工程, 2014, 43(2): 551-556. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201402040.htm

    HAN G Y, CAO L H, ZHANG W B. Design of ground-based optical radiation signature measurement system[J]. Infrared and Laser Engineering, 2014, 43(2): 551-556. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201402040.htm
    [10]
    禄晓飞, 盛捷, 赵慧. 红外辐射测量系统外场标定方法及飞行目标亮度反演方法[J]. 红外技术, 2015, 37(2): 154-160. http://hwjs.nvir.cn/article/id/hwjs201502014

    LU X F, SHENG J, ZHAO H. Outdoor calibration system of infrared device and method of computing luminance of aircraft[J]. Infrared Technology, 2015, 37(2): 154-160. http://hwjs.nvir.cn/article/id/hwjs201502014
    [11]
    魏合理, 陈秀红, 詹杰, 等. 红外辐射测量的大气修正[J]. 大气与环境光学学报, 2007, 2(6): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY200706013.htm

    WEI H L, CHEN X H, ZHAN J, et al. Atmospher correction in the measurement of infrared radiance[J]. Journal of Atmosphere and Environmental Optics, 2007, 2(6): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJY200706013.htm
    [12]
    韩玉阁, 宣益民. 大气传输特性对目标与背景红外辐射特性的影响[J]. 应用光学, 2002, 23(6): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200206002.htm

    HAN Y G, XUAN Y M. Effect of atmosphere trans-mission on IR radiation feature of target and background[J]. Applied Optics, 2002, 23(6): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX200206002.htm
    [13]
    郭立红, 郭汉洲, 杨词银, 等. 利用大气修正因子提高目标红外辐射特性测量精度[J]. 光学精密工程, 2016, 23(6): 1871-1877. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608007.htm

    GUO L H, GUO H Z, YANG C Y. Improvement of radiation measurement precision for target by using atmosphere-corrected coefficients[J]. Optics and Precision Engineering, 2016, 23(6): 1871-1877. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201608007.htm
  • Related Articles

    [1]ZHOU Huikui, ZHANG Li, HU Sujuan. Underwater Image Enhancement Based on Improved Histogram Matching and Adaptive Equalization[J]. Infrared Technology , 2024, 46(5): 532-538.
    [2]MA Qun, ZHAO Meirong, ZHENG Yelong, SUN Lin, NI Feng. Infrared Image Detail Enhancement Based on Adaptive Conditional Histogram Equalization[J]. Infrared Technology , 2024, 46(1): 52-60.
    [3]LIU He, ZHAO Tiancheng, LI Jiashuai, YANG Daiyong, YUAN Xiaocui, XU Zhihao. Contrast Enhancement Method of SF6 Infrared Image Based on Tri-histogram Equalization Algorithm[J]. Infrared Technology , 2023, 45(10): 1118-1125.
    [4]HE Zhibo, ZENG Xiangjin, DENG Chen, SONG Pengpeng. Infrared Image Enhancement Based on Local Entropy-Local Contrast and Dual-area Histogram Equalization[J]. Infrared Technology , 2023, 45(6): 598-604.
    [5]HU Xuekai, LUO Peng, LI Tiecheng, CAI Yuru, MA Na, ZHOU Xueqing. Multi-scale Image Fusion Based on Adaptive Weighting[J]. Infrared Technology , 2022, 44(4): 404-409.
    [6]CHEN Zhiheng, YAN Limin, ZHANG Jingyang. Nighttime Dehazing Algorithm with Adaptive Global Brightness Compensation[J]. Infrared Technology , 2021, 43(10): 954-959.
    [7]ZHEN Mei, WANG Shupeng. An Adaptive Weighted Average Fusion Method for Visible and Infrared Images[J]. Infrared Technology , 2019, 41(4): 341-346.
    [8]A New Multi-direction Adaptive Weighted Pseudo Median Filtering Algorithm Based on Wavelet Domain[J]. Infrared Technology , 2014, (9): 737-742.
    [9]JIANG Xiao Hui, ZHAO Xun-jie, LI Cheng-jin, ZHANG Xue-song. A Super-Resolution Algorithm Based on Adaptive Weighted Total Variation[J]. Infrared Technology , 2014, (4): 290-293.
    [10]A FCM Segmentation Method of Measurement of Image Based on Adaptive Coefficient of Fuzzy Weight[J]. Infrared Technology , 2013, (3): 146-149.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return