Citation: | PANG Shiyu, FENG Xianju. 3D Visual Reconstruction System Based on Multispectral Fusion[J]. Infrared Technology , 2024, 46(11): 1280-1285. |
To solve the problems of scattered point interference and data holes in 3D target reconstruction, and to improve the 3D visual reconstruction effect, a 3D visual reconstruction algorithm based on polarization multispectral fusion was proposed. A binocular laser scanning and polarization multispectral imaging system was built, and a fusion algorithm was used to filter the point cloud by considering the characteristic region of multispectral mapping as the two-dimensional boundary of the target 3D point cloud. The precision of Gaussian and extremum sampling was tested experimentally. The mean deviation between the mapping position and the actual position was 0.59 mm and 0.93 mm, respectively. The average noise intensity in the background area was reduced from 49.5 to 13.4 after the superposition of four polarizers for noise reduction. Testing the target features with two different local curvatures determined that after optimization, over 80% of the test points had an error better than 3.05 μm, with an average deviation of 1.49 μm. Moreover, the 3D visual reconstruction effect of the target was improved.
[1] |
胡海瑛, 惠振阳, 李娜. 基于多基元特征向量融合的机载LiDAR点云分类[J]. 中国激光, 2020, 47(8): 229-239.
HU Haiying, HUI Zhenyang, LI Na. Airborne LiDAR point cloud classification based on multiple-entity eigenvector fusion[J]. Chinese Journal of Lasers, 2020, 47(8): 229-239.
|
[2] |
薛培林, 吴愿, 殷国栋, 等. 基于信息融合的城市自主车辆实时目标识别[J]. 机械工程学报, 2020, 56(12): 165-173.
XUE Peilin, WU Yuan, YIN Guodong, et al. Real-time target recognition for urban autonomous vehicles based on information fusion[J]. CMES, 2020, 56(12): 165-173.
|
[3] |
杨思远, 郑建颖. 基于路侧三维激光雷达的车辆目标分类算法[J]. 传感器与微系统, 2020, 39(7): 123-126.
YANG S Y, ZHENG J Y. Vehicle target classification algorithm based on roadside 3D LiDAR[J]. Transducer and Microsystem Technologies, 2020, 39(7): 123-126.
|
[4] |
YAN Y, MAO Y, LI B. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 1-17. DOI: 10.1109/JSEN.2018.2815440
|
[5] |
Hossein Pourazar, Farhad Samadzadegan, Farzaneh Dadrass Javan. A deep 2D/3D Feature-Level fusion for classification of UAV multispectral imagery in urban areas[J]. Geocarto International, 2022, 37(23): 6695-6712. DOI: 10.1080/10106049.2021.1959655
|
[6] |
Sochor J, Spaňhel J, Herout A. Boxcars: improving fine-grained recognition of vehicles using 3-d bounding boxes in traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1): 97-108.
|
[7] |
王果, 王成, 张振鑫, 等. 利用车载激光点云的分车带识别及单木分割方法[J]. 激光与红外, 2020, 50(11): 1333-1337. DOI: 10.3969/j.issn.1001-5078.2020.11.008
WANG Guo, WANG Cheng, ZHANG Zhenxin, et al. Single tree segmentation method of urban distributing belt based on vehicle-borne laser point cloud data[J]. Laser & Infrared, 2020, 50(11): 1333-1337. DOI: 10.3969/j.issn.1001-5078.2020.11.008
|
[8] |
Dubská M, Herout A, Juránek R, et al. Fully automatic roadside camera calibration for traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 16(3): 1162-1171.
|
[9] |
Dubská M, Herout A, Sochor J. Automatic camera calibration for traffic understanding[C]//Proceedings of the British Machine Vision Conference (BMVC), 2014: 1-12.
|
[10] |
GISEOK K, JAE-SOO C. Vision-Based vehicle detection and inter-vehicle distance estimation for driver alarm system[J]. Optical Review, 2012, 25(6): 388-393.
|
[11] |
仝选悦, 吴冉, 杨新锋, 等. 红外与激光融合目标识别方法[J]. 红外与激光工程, 2018, 47(5): 158-165.
TONG Xuanyue, WU Ran, YANG Xinfeng, et al. Fusion target recognition method of infrared and laser[J]. Infrared and Laser Engineering, 2018, 47(5): 158-165.
|
[12] |
CHOI C, TAGUCHI Y, TUZEL O, et al. Voting-based pose estimationfor robotic assembly using a 3D sensor[C]//IEEE International Conference on Robotics & Automation, 2013: 1724-1731.
|
[13] |
王宏涛, 雷相达, 赵宗泽. 融合光谱信息的机载LiDAR点云三维深度学习分类方法[J]. 激光与光电子学进展, 2020, 57(12): 340-347.
WANG Hongtao, LEI Xiangda, ZHAO Zongze. 3D deep learning classification method for airborne LiDAR point clouds fusing spectral information[J]. Laser & Optoelectronics Progress, 2020, 57(12): 340-347.
|
1. |
黄坤琳,吴国周,徐维新,李利东,王海梅,李航,李自翔,司荆柯,刘洪宾,吴成娜. 呼伦贝尔东部农田区动态融雪过程及其影响因子. 干旱区研究. 2024(09): 1514-1526 .
![]() | |
2. |
黄林,李晖,康璇. 基于Freeman全极化分解的干雪识别指数模型构建. 厦门理工学院学报. 2023(05): 40-48 .
![]() |