FAN Xiangsuo, FAN Jinlong, WEN Lianghua, XU Zhiyong. Infrared Dim-Small Target Detection Based on Improved Spatio-Temporal Filtering[J]. Infrared Technology , 2022, 44(5): 475-482.
Citation: FAN Xiangsuo, FAN Jinlong, WEN Lianghua, XU Zhiyong. Infrared Dim-Small Target Detection Based on Improved Spatio-Temporal Filtering[J]. Infrared Technology , 2022, 44(5): 475-482.

Infrared Dim-Small Target Detection Based on Improved Spatio-Temporal Filtering

More Information
  • Received Date: January 10, 2021
  • Revised Date: June 27, 2021
  • To effectively solve the problem of low detection rates of dim and small targets caused by dynamic background changes, a detection method based on spatio-temporal filtering is proposed in this paper. Based on an analysis of the imaging characteristics of infrared images, an improved anisotropic spatial filtering algorithm is proposed to evaluate the difference in various gradient characteristics of the target area, background area, and edge contour area. The algorithm fully utilizes the gradient information in the spatial domain to construct the diffusion filter function in different directions. According to the gradient difference in various characteristics of the image, the mean value of the two directions with the smallest value of the diffusion function is selected as the result of spatial filtering to retain the target signal to the maximum extent. To effectively enhance the energy of dim and small targets and address the shortcomings of high-order cumulants that only use the temporal domain information of pixel points for energy enhancement, an energy enhancement algorithm based on spatial-temporal neighborhood blocks is proposed. Experimental results reveal that the proposed algorithm can effectively enhance the detection of dim and small targets in dynamically changing scenes.
  • [1]
    樊香所. 序列图像弱小目标检测与跟踪算法研究[D]. 成都: 电子科技大学, 2019.

    FAN Xiangsuo. Dim and Small Targets Detection and Tracking Algorithms in Sequence Image[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
    [2]
    Bae T W, Kim Y C, Ahn S H, et al. An efficient two dimensional least mean square based on block statistics for small target detection[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(10): 1092-1101. DOI: 10.1007/s10762-009-9530-6
    [3]
    BAI X Z, ZHOU F G, JIN T. Enhancement of dim small target through modified top-hat transformation under the condition of heavy clutter[J]. Signal Processing, 2010, 90(1): 1643-1654.
    [4]
    秦翰林, 周慧鑫, 刘上乾, 等. 基于双边滤波的弱小目标背景抑制[J]. 强激光与粒子束, 2009, 21(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200901007.htm

    QIN H, ZHOU H, LIU S, et al. Dim and small target background suppression using bilateral filtering[J]. High Power Laser and Particle Beams, 2009, 21(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY200901007.htm
    [5]
    严高师, 毕务忠. 基于区域奇异性滤波的小目标检测[J]. 光学技术, 2006, 33(2): 163-165, 169. DOI: 10.3321/j.issn:1002-1582.2006.02.003

    YAN G S, BI W Z. Detection algorithm of small target based on regional singularity filter[J]. Optical Technology, 2006, 33(2): 163-165, 169. DOI: 10.3321/j.issn:1002-1582.2006.02.003
    [6]
    连可, 王厚军, 李丹. 基于红外目标局部灰度特性分析的管道滤波方法[J]. 弹箭与制导学报, 2011, 31(4): 200-206. DOI: 10.3969/j.issn.1673-9728.2011.04.057

    LIAN K, WANG H J, LI D. Pipeline filtering method based on feature analysis of local grey level of small infrared target[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 200-203, 206. DOI: 10.3969/j.issn.1673-9728.2011.04.057
    [7]
    Oliver N M, Rosario B, Pentland A P. A Bayesian computer vision system for modeling human interactions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843. DOI: 10.1109/34.868684
    [8]
    Bouwmans T, Baf F E, Vachon B. Background modeling using mixture of Gaussians for foreground detection - a survey [J]. Recent Patents on Computer Science, 2008, 1(3): 219-237. DOI: 10.2174/2213275910801030219
    [9]
    何玉杰, 李敏, 张金利, 等. 基于低秩三分解的红外图像杂波抑制[J]. 光学与精密工程, 2015, 23(7): 2069-2078. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201507034.htm

    HE Y J, LI M, ZHANG J L, et al. Clutter suppression of infrared image based on three-component low rank matrix decomposition[J]. Optics and Precision Engineering, 2015, 23(7): 2069-2078 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201507034.htm
    [10]
    GUO J, WU Y, DAI Y. Small target detection based on reweighted infrared patch-image model[J]. IET Image Processing, 2018, 12(1): 70-79.
    [11]
    陆福星, 李夜金, 陈忻, 等. 基于Top-Hat变换的PM模型弱小目标检测[J]. 系统工程与电子技术, 2018, 40(7): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807001.htm

    LU F X, LI Y J, CHEN X, et al. Weak target detection for PM model based on Top-hat transform[J]. Systems Engineering and Electronics, 2018, 40(7): 1417-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807001.htm
    [12]
    周慧鑫, 赵营, 秦翰林, 等. 多尺度各向异性扩散方程的红外弱小目标检测算法[J]. 光子学报, 2015, 44(9): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201509027.htm

    ZHOU H X, ZHAO Y, QIN H L, et al. Infrared dim and small target detection algorithm based on multi-scale anisotropic diffusion equation[J]. Acta Photonica Sinica, 2015, 44(9): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201509027.htm
    [13]
    唐意东, 黄树彩, 钟宇, 等. 基于形态学和高阶统计量的弱小运动目标检测[J]. 现代防御技术, 2016, 44(2): 151-156. DOI: 10.3969/j.issn.1009-086x.2016.02.024

    TANG Y D, HUANG S C, ZHONG Y, et al. Moving dim target detection based on morphology and high-order statistics in infrared image[J]. Modern Defense Technology, 2016, 44(2): 151-156. DOI: 10.3969/j.issn.1009-086x.2016.02.024
  • Related Articles

    [1]XU Shiwen, WANG Heng, ZHANG Hua, PANG Jie. Human Fall Detection Method Based on Key Points in Infrared Images[J]. Infrared Technology , 2021, 43(10): 1003-1007.
    [2]ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
    [3]A Method of Object Tracking Based on Feature Point Matching[J]. Infrared Technology , 2016, 38(7): 597-601.
    [4]ZHAO De-li, ZHU You-pan, LI Yan, ZENG Bang-ze, PAN Chao, LUO Lin, WU Cheng. Investigation on Infrared and Low Light Level Image Registration Algorithm Based on Point Feature and Freeman Chain Code[J]. Infrared Technology , 2015, (6): 467-471.
    [5]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [6]YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772.
    [7]YANG Li, YANG Hua. The Key Techniques and Applications of Infrared False Target[J]. Infrared Technology , 2006, 28(9): 531-534. DOI: 10.3969/j.issn.1001-8891.2006.09.009
    [8]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
    [9]Study on the Key Techniques of the Imaging Infrared Guidance for AAM[J]. Infrared Technology , 2003, 25(4): 45-48. DOI: 10.3969/j.issn.1001-8891.2003.04.011
    [10]Modification of the Infrared Point Measurement for Temperature[J]. Infrared Technology , 2002, 24(3): 49-51,55. DOI: 10.3969/j.issn.1001-8891.2002.03.013
  • Cited by

    Periodical cited type(2)

    1. 邢志坤. 基于LabVIEW的变电站移动机器人轨迹跟踪虚拟仿真系统设计. 自动化与仪表. 2024(07): 67-71 .
    2. 李辉,余大成,陈耀. 基于OWA算子和CWAA算子的变电站巡视周期优化. 广西电力. 2024(05): 50-54 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return