CHI Linhui, QIAN Yunsheng, JI Yuhao. Verification Protocol for Improving Communication Stability Between FPGAs[J]. Infrared Technology , 2020, 42(11): 1022-1027.
Citation: CHI Linhui, QIAN Yunsheng, JI Yuhao. Verification Protocol for Improving Communication Stability Between FPGAs[J]. Infrared Technology , 2020, 42(11): 1022-1027.

Verification Protocol for Improving Communication Stability Between FPGAs

More Information
  • Received Date: July 02, 2020
  • Revised Date: November 01, 2020
  • As field-programmable gate arrays(FPGAs) become increasingly used in large-scale systems, it is often difficult for a single-chip FPGA to perform all the tasks required. High-speed and stable communication between multiple FPGAs has become a focus of research in this field. For this purpose, a verification protocol based on low-voltage differential signaling (LVDS) that can be used for high-speed and stable communication between FPGA chips was designed. This protocol performs multiple rounds of multipath verification based on conventional LVDS communication to improve transmission reliability. Based on this protocol, a nine-channel LVDS communication test system consisting of two Xilinx 7 series FPGAs was built. One channel was used to synchronize the clock, and the other eight channels were used for checksum communication. After a long period of high- and low-temperature tests, the bit error rate was greatly reduced compared with conventional LVDS communications while ensuring a single transmission rate of 1.2 Gb/s.
  • [1]
    FANG J, DAI S. Design of multi-channel intelligent transmitter based on HART protocol[J]. Microcomputer & Its Applications, 2011, 30(20): 23-25. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WXJY201120011.htm
    [2]
    HOU Q L, XU K J, FANG M, et al. A DSP-based signal processing methd and system for CMF[J]. Measurement Journal of the International Measurement Confederation, 2013, 46(7): 2184-2192. DOI: 10.1016/j.measurement.2013.03.010
    [3]
    易敏, 苏淑靖.基于LVDS的高可靠性数据传输设计[J].微电子学与计算机, 2014(9): 131-134. http://d.wanfangdata.com.cn/Periodical/wdzxyjsj201409030

    YI Min, SU Shujing. High Reliability of Data Transmission Design Based on LVDS[J]. Microelectronics & Computer, 2014(9): 131-134. http://d.wanfangdata.com.cn/Periodical/wdzxyjsj201409030
    [4]
    冯晓东, 杨可.一种基于LVDS接口的高速并行数据传输系统设计与实现[J].数字技术与应用, 2013(6): 64-65. http://d.wanfangdata.com.cn/Periodical/szjsyyy201306046

    FENG Xiaodong, YANG Ke. The Design and implementation of one high speed parallel data transfer system based on LVDS[J]. Digital Technology & Application, 2013(6): 64-65. http://d.wanfangdata.com.cn/Periodical/szjsyyy201306046
    [5]
    Alkafi A, Imran R, Islam M. Development of FSM based Running Disparity Controlled 8b/10b Encoder/Decoder with Fast Error Detection Mechanism[J]. HCTL Open IJTIR, 2013(2): 2321-1814. http://opendepot.org/2121
    [6]
    Tseng S.H, Liao Y L. Monolithic power splitter for differential signal[P]. [2011-4-29]. U.S. Patent 13, 097, 072.
    [7]
    袁文燕, 郑玥, 宋宇飞, 等. FPGA片间万兆可靠通信的设计与实现[J].电视技术, 2014(1): 43-46. http://www.cqvip.com/QK/91997X/20141/48290713.html

    YUAN Wenyan, ZHENG Yue, SONG Yufei, et al. Design and Implementation of 10- Gbit/s Reliable Intra- FPGA Communication[J]. Video Engineering, 2014(1): 43-46. http://www.cqvip.com/QK/91997X/20141/48290713.html
    [8]
    Xilinx. 7 Series FPGAs Select lO Resources User Guide[Z]. America: Xilinx Inc, 2018.
    [9]
    WONG A C, Borrelli C J, Jones L, et al. Transceiver for providing a clock signal[P]. [2013-8-8]. U.S. Patent 13, 962, 468.
    [10]
    王建东.基于FPGA的高速串行数据采集及恢复技术研究[D].成都: 电子科技大学, 2017.

    WANG Jiandong. Research On High Speed Serial Data Acuisition And Recovery Technology Based On FPGA[D]. Chengdu: School of Microelectronics & Solid State Electronics, 2017.
    [11]
    Xilinx. 7 Series FPGAs GTX/GTH Transceivers User Guide[Z]. America: Xilinx Inc, 2018.
    [12]
    Wirthlin MJ, Takai H. Harding. A soft error rate estimations of the Kintex-7 FPGA within the ATLAS Liquid Argon (LAr) Calorimeter[J]. Journal of Instrumentation, 2014, 9(1): 1-8. http://adsabs.harvard.edu/abs/2014JInst...9C1025W
    [13]
    Herrera-Alzu I, Lopez-Vallejo M. Design Techniques for Xilinx Virtex FPGA Configuration Memory Scrubbers[J]. IEEE Transactions on Nuclear Science, 2013, 60(1): 376-385. DOI: 10.1109/TNS.2012.2231881
    [14]
    Xilinx. Vivado Design Suite 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries Guide[Z]. America: Xilinx Inc, 2017.
  • Cited by

    Periodical cited type(11)

    1. 李卓. 基于线结构光成像技术的定制产品包装视觉图像处理方法. 激光杂志. 2024(02): 208-213 .
    2. 徐立,刘亮,赵凤军. 灰度变换下多模态刚性医学图像分层增强仿真. 计算机仿真. 2024(04): 250-254 .
    3. 唐菀,刘鑫. 视觉注意模型的低照度图像感兴趣区域检测. 计算机仿真. 2024(05): 242-245+337 .
    4. 阚绪康,史格非,杨雪榕. 基于动态特征点滤除与关键帧选择优化的ORB-SLAM2算法. 计算机应用. 2024(10): 3185-3190 .
    5. 卢佳佳,蔡坚勇. 基于增强视觉质量的图像感兴趣区域检测研究. 计算机仿真. 2023(01): 234-238 .
    6. 孙宇辰,石逸夫,王查理,石可民. 一种视觉定位算法在社区低速车上的应用. 科技与创新. 2023(08): 168-170 .
    7. 来金强. 基于目标检测和动静点分离的视觉即时定位与地图构建技术. 机械制造. 2023(11): 80-84 .
    8. 刘文杰,刘小娇,付猛,姚玉波. 基于视觉SLAM的动态图像处理方法研究. 数字通信世界. 2022(06): 14-16 .
    9. 贾雨萌,刘甜甜,李振华. 一种改进的SLAM建图方法研究. 物联网技术. 2022(08): 71-73 .
    10. 张凤,王伟良,袁帅,孙明智. 动态环境下基于卷积神经网络的视觉SLAM方法. 沈阳工业大学学报. 2022(06): 688-693 .
    11. 王德欣. SLAM技术及其在测绘领域中的应用研究. 西部资源. 2022(05): 106-108 .

    Other cited types(2)

Catalog

    Article views (323) PDF downloads (29) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return