LI Wei, LI Zhongmin. Visual Fidelity Fusion of Infrared and Visible Image Using Edge-Aware Smoothing-Sharpening Filter[J]. Infrared Technology , 2022, 44(7): 686-692.
Citation: LI Wei, LI Zhongmin. Visual Fidelity Fusion of Infrared and Visible Image Using Edge-Aware Smoothing-Sharpening Filter[J]. Infrared Technology , 2022, 44(7): 686-692.

Visual Fidelity Fusion of Infrared and Visible Image Using Edge-Aware Smoothing-Sharpening Filter

More Information
  • Received Date: October 23, 2021
  • Revised Date: November 08, 2021
  • Recently, multi-scale feature extraction has been widely used in the field of infrared and visible image fusion; however, most extraction processes are too complex, and the visual effect is not good. To improve the visual fidelity of the fusion result, a multi-scale horizontal image fusion model based on an edge-aware smoothing-sharpening filter (EASSF) is proposed for infrared and visible images. First, to obtain multi-scale texture components and basic components in the horizontal direction, a multi-scale horizontal image decomposition method based on the EASSF is proposed to decompose the source image. Second, the maximum fusion rule is used to merge texture components, which can avoid loss of information detail. Then, to capture salient target information, the basic components are fused via the perceptual-fusion rule. Finally, the fused image is obtained by integrating the fused multi-scale texture components and basic components. By analyzing the perceptual fusion coefficient of PF, the appropriate range of infrared and visible image fusion in the multi-scale EASSF is obtained through the objective data of the fusion results. In this range, compared with several classical and popular fusion methods, the proposed fusion model not only avoids the complexity of feature information extraction, but also effectively ensures the visual fidelity of fusion results by integrating the significant spectral information of basic components.
  • [1]
    MA J Y, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    Singh R, Vatsa M, Noore A. Integrated multilevel image fusion and match score fusion of visible and infrared face image for robust recognition[J]. Pattern Recogn. 2008, 41(3): 880-893. DOI: 10.1016/j.patcog.2007.06.022
    [3]
    Reinhard E, Ashikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Computer. Graph. Appl. , 2002, 21(5): 34-41.
    [4]
    Somone G, Farina A, Morabito F C, et al. Image fusion techniques for remote sensing applications[J]. Inform. Fusion, 2002, 3(1): 3-15. DOI: 10.1016/S1566-2535(01)00056-2
    [5]
    陈峰, 李敏, 马乐, 等. 基于滚动引导滤波的红外与可见光图像融合算法[J]. 红外技术, 2020, 42(1): 54-61. http://hwjs.nvir.cn/article/id/hwjs202001008

    CHEN Feng, LI Min, MA Le, et al. Infrared and visible image fusion algorithm based on the rolling guidance filter[J]. Infrared Technology, 2020, 42(1): 54-61. http://hwjs.nvir.cn/article/id/hwjs202001008
    [6]
    杨九章, 刘炜剑, 程阳. 基于对比度金字塔与双边滤波的非对称红外与可见光图像融合[J]. 红外技术, 2021, 43(9): 840-844. http://hwjs.nvir.cn/article/id/1c7de46d-f30d-48dc-8841-9e8bf3c91107

    YANG Jiuzhang, LIU Weijian, CHENG Yang. A symmetric infrared and visible image fusion based on contrast pyramid and bilateral filtering[J]. Infrared Technology, 2021, 43(9): 840-844. http://hwjs.nvir.cn/article/id/1c7de46d-f30d-48dc-8841-9e8bf3c91107
    [7]
    DU Qinglei, XU Han, MA Yong, et al. Fussing infrared and visible images of different resolutions vis total variation model[J]. Sensors, 2018, 18(11): 3827. DOI: 10.3390/s18113827
    [8]
    ZHAO Z, XU S, ZHANG C, et al. Bayesian fusion for infrared and visible images[J]. Signal Processing, 2020, 177: 165-168
    [9]
    LI H, WU X, Kittler J. Infrared and visible image fusion using a deep learning framework[C]//The 24th International Conference on Pattern Recognition (ICPR), 2018: 2705-2710.
    [10]
    LI Hui, WU Xiaojun, Tariq S. Durrani. Infrared and visible image fusion with ResNet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019, 102: 1030390.
    [11]
    TAN Wei, Thitn William, XIANG Pei, Zhou, Huixin. Multi-modal brain image fusion based on multi-level edge-preserving filtering[J]. Biomedical Signal Processing and Control, 2021, 64(11): 102280.
    [12]
    DENG Guan, Galetto Fernando J, Al-Nasrawi M, et al. A guided edge-aware smoothing-sharpening filter based on patch interpolation model and generalized Gamma distribution[J]. IEEE Open Journal of Signal Processing, 2021, 2: 119-135. DOI: 10.1109/OJSP.2021.3063076
    [13]
    Toet A. TNO Image Fusion Dataset[EB/OL]. [2021-10-01]. http://figshare.com/articles/TNO_Image_Fusion_Dataset/1008029.
    [14]
    Xydeas C S, Petrovic V. Objective image fusion performance measure[J]. Electron. Lett., 2000, 36(4): 308-309. DOI: 10.1049/el:20000267
    [15]
    Aslantas V, Bendes E. A new image quality metric for image fusion: the sum of the correlations of differences[J]. International Journal of Electronics and Communications, 2015, 69(12): 1890-1896. DOI: 10.1016/j.aeue.2015.09.004
    [16]
    LI H, WU X J, Kittler J. Infrared and visible image fusion using a deep learning framework[C]//The 24th International Conference on Pattern Recognition (ICPR), 2018: 2705-2710.
    [17]
    YAN Huibin, LI Zhongmin. A general perceptual infrared and visible image fusion framework based on linear filter and side window filtering technology[J]. IEEE Access, 2020, 8: 3029–3041. DOI: 10.1109/ACCESS.2019.2961626
  • Related Articles

    [1]MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
    [2]LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
    [3]YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.
    [4]LEI Zengqiang, XU Huiyong, CHENG Gang, SHEN Liangji, CHEN Zhixue. Design of Readout Circuit of Incremental Focusing Encoder Based on CPLD[J]. Infrared Technology , 2020, 42(11): 1037-1041.
    [5]LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419.
    [6]ZHANG Yuping, TANG Libin. Research Progress in Photodetectors Based on Topological Insulators[J]. Infrared Technology , 2020, 42(1): 1-9.
    [7]GAO Run, NIU Chunhui, LI Xiaoying, LYU Yong. Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser[J]. Infrared Technology , 2016, 38(8): 636-642.
    [8]KANG Bing-xin, LI Yu, BAI Pi-ji, LIU Hui-ping, WANG Bo. Design of A Novel Current Mirroring Integration Readout Integrated Circuit for Quantum Well Infrared Photodetectors[J]. Infrared Technology , 2012, 34(2): 95-98. DOI: 10.3969/j.issn.1001-8891.2012.02.007
    [9]WANG Yong-pan, GUO Fang-min. Wide Dynamic Range Readout Circuit Design on High Sensitivity Quantum Dot-in-Well Photodetector[J]. Infrared Technology , 2011, 33(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2011.06.006
    [10]ZHAN Guo-zhong, GUO Fang-min, HUANG Jing, ZHU Rong-jing. Research on Control Circuit with Tunable Parameters for Photodetector Readout Circuit[J]. Infrared Technology , 2008, 30(8): 485-488. DOI: 10.3969/j.issn.1001-8891.2008.08.014
  • Cited by

    Periodical cited type(2)

    1. 仝淅哲,申钧. 光导型石墨烯探测器暗电流抑制电路研究. 红外. 2025(02): 1-12 .
    2. 李世龙,焦岗成. 旋涂法制备石墨烯光阴极与测试分析. 红外技术. 2024(12): 1459-1463 . 本站查看

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return