Volume 43 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
SONG Jingjing, LI Zhonghui, ZHANG Xin, TIAN He, ZHENG Anqi, ZANG Zesheng, ZHANG Quancong. Research on Normalized Histogram Characterization of Infrared Thermal Image of Rock Sample Damage[J]. Infrared Technology , 2021, 43(8): 777-783.
Citation: SONG Jingjing, LI Zhonghui, ZHANG Xin, TIAN He, ZHENG Anqi, ZANG Zesheng, ZHANG Quancong. Research on Normalized Histogram Characterization of Infrared Thermal Image of Rock Sample Damage[J]. Infrared Technology , 2021, 43(8): 777-783.

Research on Normalized Histogram Characterization of Infrared Thermal Image of Rock Sample Damage

  • Received Date: 2020-07-29
  • Rev Recd Date: 2020-08-22
  • Publish Date: 2021-08-20
  • Infrared thermal imaging is a very promising method for evaluating coal and rock damage. To further process the infrared image and extract the key information, the damage status of coal and rock can be distinguished according to this quantitative information. With uniaxial loading, fracture development maps were developed, and synchronous acquisition of infrared images of the rock samples was carried out. The infrared images were analyzed and processed using a normalized histogram, and the details of the infrared images were quantitatively characterized. The results show that the gray value distribution of the infrared images at different times can reflect the surface temperature changes and stress values during the failure process of the sample. When the main fracture occurred, the percentage of pixels in the gray value interval [240, 255] (the surface temperature of the rock sample was 29.01℃-33.19℃) increased by 13.85% compared with that in the previous moment. In addition, the change trend of the proportion of pixels in the gray value interval [224, 255] over time is highly correlated with rock damage variables, which shows that the normalized histogram can characterize the damage and destruction process of the rock mass.
  • loading
  • [1]
    王云飞, 黄正均, 崔芳. 煤岩破坏过程的细观力学损伤演化机制[J]. 煤炭学报, 2014, 39(12): 2390-2396. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201412007.htm

    WANG Yunfei, HUANG Zhengjun, CUI Fang. Damage evolution mechanism in the failure process of coal rock based on mesomechanics[J]. Journal of China Coal Society, 2014, 39(12): 2390-2396. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201412007.htm
    [2]
    王登科, 尹光志, 刘建, 等. 三轴压缩下含瓦斯煤岩弹塑性损伤耦合本构模型[J]. 岩土工程学报, 2010, 32(1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001011.htm

    WANG Dengke, YIN Zhiguang, LIU Jian, et al. Elastoplastic damage coupled model for gas-saturated coal under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201001011.htm
    [3]
    李波波, 张尧, 任崇鸿, 等. 三轴应力下煤岩损伤-能量演化特征研究[J]. 中国安全科学学报, 2019, 29(10): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201910017.htm

    LI Bobo, ZHANG Yao, REN Chonghong, et al. Study on damage -energy evolution characteristics of coal under triaxial stress[J]. China Safety Science Journal, 2019, 29(10): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201910017.htm
    [4]
    Stergiopoulos C, Stavrakas I, Hloupis G, et al. Electrical and acoustic emissions in cement mortar beams subjected to mechanical loading up to fracture[J]. Engineering Failure Analysis, 2013, 35: 454-461. doi:  10.1016/j.engfailanal.2013.04.015
    [5]
    QIU L, SONG D, HE X, et al. Multifractal of electromagnetic wave formand spectrum about coal rock samples subjected touniaxial compression[J]. Fractals, 2020, 28(4): 2050061. doi:  10.1142/S0218348X20500619
    [6]
    MA L, ZHANG Y, CAO K, et al. An experimental study on infrared radiation characteristics of sandstone samples under uniaxial loading[J]. Rock Mechanicsand Rock Engineering, 2019, 52(9): 3493-3500. doi:  10.1007/s00603-018-1688-6
    [7]
    Kourkoulis S K, Dakanali I, Pasiou E D, et al. Acoustic emissions versus pressure stimulated currents during bending of restored marble epistyles: preliminary results[J]. Frattura ed Integrità Strutturale, 2017, 11(41): 536-551. doi:  10.3221/IGF-ESIS.41.64
    [8]
    NIU Y, WANG C, WANG E, et al. Experimental study on the damage evolutionof gas bearing coaland its electric potential response[J]. Rock Mechanic sand Rock Engineering, 2019, 52(11): 4589-4604. doi:  10.1007/s00603-019-01839-z
    [9]
    马立强, 李奇奇, 曹新奇, 等. 煤岩受压过程中内部红外辐射温度变化特征研究[J]. 中国矿业大学学报, 2013, 42(3): 331-336. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201303002.htm

    MA Liqiang, LI Qiqi, CAO Xinqi, et al. Variation characteristics of internal infrared radiation temperature of coal-rock mass in compressio[J]. Journal of China University of Mining & Technology, 2013, 42(3): 331-336. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201303002.htm
    [10]
    马立强, 张垚, 孙海, 等. 煤岩破裂过程中应力对红外辐射的控制效应试验[J]. 煤炭学报, 2017, 42(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701019.htm

    MA Liqiang, ZHANG Yao, SUN Hai, et al. Experimental study on dependence of infrared radiation on stress for coal fracturing process[J]. Journal of China Coal Society, 2017, 42(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701019.htm
    [11]
    来兴平, 刘小明, 单鹏飞, 等. 采动裂隙煤岩破裂过程热红外辐射异化特征[J]. 采矿与安全工程学报, 2019, 36(4): 777-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904018.htm

    LAI Xingping, LIU Xiaoming, SHAN Pengfei, et al. Study on thermal infrared radiation variation of fractured coal-rock mass failure during mining[J]. Journal of Mining & Safety Engineering, 2019, 36(4): 777-785. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201904018.htm
    [12]
    姜永鑫, 李忠辉, 曹康, 等. 不同加载速率下煤岩声发射与红外辐射特征研究[J/OL]. [2021-07-30]. 煤炭科学技术, http://kns.cnki.net/kcms/detail/11.2402.TD.20200217.1336.016.html

    JIANG Yongxin, LI Zhonghui, CAO Kang, et al. Study on acoustic emission and infrared radiation characteristics and destruction precursor of coal[J/OL]. [2021-07-30]. Coal Science and Technology, http://kns.cnki.net/kcms/detail/11.2402.TD.20200217.1336.016.html.
    [13]
    程富起, 李忠辉, 魏洋, 等. 基于单轴压缩红外辐射的煤岩损伤演化特征[J]. 工矿自动化, 2018, 44(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201805013.htm

    CHENG Fuqi, LI Zhonghui, WEI Yang, et al. Coal-rock damage evolution characteristics based on infrared radiation under uniaxial compression[J]. Industry and Mine Automation, 2018, 44(5): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MKZD201805013.htm
    [14]
    LI Z H, YIN S, NIU Y, et al. Experimental study on the infrared thermal imaging of a coal fracture under the coupled ects of stress and gas[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 444-451. doi:  10.1016/j.jngse.2018.05.019
    [15]
    田贺, 李忠辉, 殷山, 等. 煤样单轴压缩破坏红外温度临界慢化前兆研究[J]. 煤矿安全, 2020, 51(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202003008.htm

    TIAN He, LI Zhonghui, YIN Shan, et al. Study on precursor of infrared temperature critical slowing in coal sample uniaxial compression failure[J]. Safety in Coal Mines, 2020, 51(3): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202003008.htm
    [16]
    Mineo S, Pappalardo G. The use of infrared thermography for porosity assessment of intact rock[J]. Rock mechanics and Rock Engineering, 2016, 49(8): 3027-3039. doi:  10.1007/s00603-016-0992-2
    [17]
    Fiorucci M, Marmoni G M, Martino S, et al. Thermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto test-site, Italy)[J]. Sensors, 2018, 18(7): 2221. doi:  10.3390/s18072221
    [18]
    SUN H, LIU X, ZHANG S, et al. Experimental investigation of acoustice mission and infrared radiation thermography of dynamic fracturing process of hard rock pillarin extremely steep and thick coal seams[J]. Engineering Fracture Mechanics, 2020, 226: 106845. doi:  10.1016/j.engfracmech.2019.106845
    [19]
    Pappalardo G. First results of infrared thermography applied to the evaluation of hydraulic conductivity in rock masses[J]. Hydrogeology Journal, 2018, 26(2): 417-428. doi:  10.1007/s10040-017-1670-5
    [20]
    张顺, 谭书林, 许里杰, 等. 基于CLAHE的钢管混凝土脱空检测热像图增强方法[J]. 西华大学学报: 自然科学版, 2019, 38(6): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX201906018.htm

    ZHANG Shun, TAN Shulin, XU Lijie, et al. Detection of void to CFST with infrared thermal enhancement based on contrast limited adaptive histogram equalization[J]. Journal of Xihua University: Natural Science Edition, 2019, 38(6): 107-112. https://www.cnki.com.cn/Article/CJFDTOTAL-SCGX201906018.htm
    [21]
    陈钱. 红外图像处理技术现状及发展趋势[J]. 红外技术, 2013, 35(6): 311-318. http://hwjs.nvir.cn/article/id/hwjs201306001

    CHEN Qian. The status and development trend of infrared image processing technology[J]. Infrared Technology, 2013, 35(6): 311-318. http://hwjs.nvir.cn/article/id/hwjs201306001
    [22]
    王笛, 沈涛, 孙宾宾, 等. 基于大气灰度因子的红外图像增强算法[J]. 激光与红外, 2019, 49(9): 1135-1140. doi:  10.3969/j.issn.1001-5078.2019.09.018

    WANG Di, SHEN Tao, SUN Binbin, et al. Infrared image enhancement algorithm based on atmospheric gray factor[J]. Laser & Infrared, 2019, 49(9): 1135-1140. doi:  10.3969/j.issn.1001-5078.2019.09.018
    [23]
    张婷婷, 祁伟, 曹峰, 等. 基于全局和局部特征的自适应红外图像增强算法研究[J]. 信息与电脑: 理论版, 2020, 32(3): 17-19, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-XXDL202003008.htm

    ZHANG Tingting, QI Wei, CAO Feng, et al. Infrared image enhancement based on global and local features[J]. China Computer & Communication, 2020, 32(3): 17-19, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-XXDL202003008.htm
    [24]
    曹海杰, 刘宁, 许吉, 等. 红外图像自适应逆直方图增强技术[J]. 红外与激光工程, 2020, 49(4): 256-262. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202004036.htm

    CAO Haijie, LIU Ning, XU Ji, et al. Infrared image adaptive inverse histogram enhancement technology[J]. Infrared and Laser Engineering, 2020, 49(4): 256-262. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202004036.htm
    [25]
    葛朋, 杨波, 洪闻青, 等. 一种结合PE的高动态范围红外图像压缩及细节增强算法[J]. 红外技术, 2020, 42(3): 279-285. http://hwjs.nvir.cn/article/id/hwjs202003011

    GE Peng, YANG Bo, HONG Wenqing, et al. Dynamic range compression and detail enhancement algorithm combined with PE for high dynamic range infrared images[J]. Infrared Technology, 2020, 42(3): 279-285. http://hwjs.nvir.cn/article/id/hwjs202003011
    [26]
    李玉倩, 刘林, 李金屏. 视频分析中灰度直方图的叠加原理研究[J]. 山东大学学报: 理学版, 2009, 44(11): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX200911016.htm

    LI Yuqian, LIU Lin, LI Jinping. Superposition principle of gray histograms in video analysis[J]. Journal of Shandong University: Natural Science, 2009, 44(11): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDX200911016.htm
    [27]
    陈永亮. 灰度图像的直方图均衡化处理研究[D]. 合肥: 安徽大学, 2014.

    CHEN Yongliang. Gray Image Histogram Equalization Processing Research[D]. Hefei: Anhui university, 2014.
    [28]
    唐春安. 岩石破裂过程中的灾变[M]. 北京: 煤炭工业出版社, 1993.

    TANG Chunan. Catastrophe During Rock Fracture[M]. Beijing: China Coal Industry Publishing House, 1993.
    [29]
    张艳博, 刘善军. 含孔岩石加载过程的热辐射温度场变化特征[J]. 岩土力学, 2011, 32(4): 1013-1017, 1024. doi:  10.3969/j.issn.1000-7598.2011.04.010

    ZHANG Yanbo, LIU Shanjun. Thermal radiation temperature field variation of hole rock in loading process[J]. Rock and Soil Mechanics, 2011, 32(4): 1013-1017, 1024. doi:  10.3969/j.issn.1000-7598.2011.04.010
    [30]
    Rabotnov Y N. Paper 68: On the equation of state of creep[C]//Proceedings of the Institution of Mechanical Engineers, 1963, 178(1): 2-117-2-122.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (265) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return