LI Zaibo, LI Yunxue, MA Xu, TIAN Yafang, SHI Yanli. Measurement and Suppression Method for Excess Noise in Avalanche Photodiodes[J]. Infrared Technology , 2022, 44(4): 343-350.
Citation: LI Zaibo, LI Yunxue, MA Xu, TIAN Yafang, SHI Yanli. Measurement and Suppression Method for Excess Noise in Avalanche Photodiodes[J]. Infrared Technology , 2022, 44(4): 343-350.

Measurement and Suppression Method for Excess Noise in Avalanche Photodiodes

More Information
  • Received Date: July 11, 2021
  • Revised Date: July 28, 2021
  • Avalanche photodiodes (APDs) have been widely used in high bit rate, long-distance optical fiber communication systems because of their high sensitivity and gain bandwidth. The excess noise generated in the avalanche process has a significant impact on the sensitivity of APD. Therefore, the study of excess noise is crucial for the improvement of APD performance. The existing methods for testing excess noise of avalanche photodiodes primarily include direct power measurement and phase-sensitive detection. This article briefly introduces these testing methods, analyzes their advantages and disadvantages, and summarizes the state-of-the-art testing methods. Additionally, three methods to reduce excess noise are summarized: choosing materials with low impact ionization coefficient, using relaxation space to change the thickness of the multiplier layer to reduce the number of impact ionization of carriers and engineering the APD for appropriately heterogeneous impact ionization.
  • [1]
    Tosi A, Calandri N, Sanzaro M, et al. Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 192-197. DOI: 10.1109/JSTQE.2014.2328440
    [2]
    Emmons R B. Avalanche photodiode frequency response[J]. Journal of Applied Physics, 1967, 38(9): 3705-3714. DOI: 10.1063/1.1710199
    [3]
    Lau K S, Tan C H, Ng B K, et al. Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end[J]. Measurement Science and Technology, 2006, 17(7): 1941-1946. DOI: 10.1088/0957-0233/17/7/036
    [4]
    Campbell J C, Chandrasekhar S, Tsang W T, et al. Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes[J]. Journal of Lightwave Technology, 1989, 7(3): 473-478. DOI: 10.1109/50.16883
    [5]
    李奕键. APD电路模拟与过剩噪声因子实验研究[D]. 武汉: 华中科技大学, 2013.

    LI Yijian. Experimental study on APD Circuit Simulation and excess Noise factor[D]. Wuhan: Huazhong University of Science and Technology, 2013.
    [6]
    郭萍, 崔大健, 王波. PIN、雪崩光电二极管测试方法: SJ/T 2354-2015[S]. [2015-09-26] 北京: 中国电子技术标准化研究院.

    GUO Ping, CUI Dajian, WANG Bo. SJ/T 2354-2015 PIN, avalanche photodiode test method[S] [2015-09-26]. Beijing: China National Institute of Electronic Technology Standardization.
    [7]
    李永亮, 余健辉, 张军. APD探测器模块性能及噪声检测[J]. 应用光学, 2019, 40(6): 1115-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201906030.htm

    LI Yonliang, YU Jianhui, ZHANG Jun. APD detector module performance and noise detection[J]. Applied Optics, 2019, 40(6): 1115-1119. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201906030.htm
    [8]
    Bulman G E, Robbins V M, Stillman G E. The determination of impact ionization coefficients in (100) gallium arsenide using avalanche noise and photocurrent multiplication measurements[J]. IEEE Transactions on Electron Devices, 2005, 32(11): 2454-2466.
    [9]
    Anselm K A, Yuan P, Hu C, et al. Characteristics of GaAs and AlGaAs homojunction avalanche photodiodes with thin multiplication regions[J]. Applied Physics Letters, 1997, 71(26): 3883-3885. DOI: 10.1063/1.120533
    [10]
    LI K F, ONG D S, David J, et al. Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes[J]. IEEE Transactions on Electron Devices, 1998, 45(10): 2102-2107. DOI: 10.1109/16.725242
    [11]
    Green J E, David J P R, Tozer R C. A transimpedance amplifier for excess noise measurements of high junction capacitance avalanche photodiodes[J]. Measurement Science & Technology, 2012, 23(12): 125901-125913.
    [12]
    LIANG Q, Dimler S D, Baharuddin N A P, et al. An excess noise measurement system for weak responsivity avalanche photodiodes[J]. Measurement Science and Technology, 2018, 29(6): 065015-065021. DOI: 10.1088/1361-6501/aabc8b
    [13]
    LIANG Q, Cheong J S L, Ong J S, et al. Avalanche noise in Al0.52In0.48P diodes[J]. IEEE Photonics Technology Lett, 2016, 28(4): 481-484. DOI: 10.1109/LPT.2015.2499545
    [14]
    CHOU F P, Hsieh Y C, HUANG C A, et al. Excess noise of 850-nm silicon avalanche photodiodes fabricated using CMOS process[C]//2014 International Symposium on Next-Generation Electronics (ISNE) of IEEE, 2014, 978(1): 1-3.
    [15]
    Lee M J, Rücker H, Choi W Y. Optical-power dependence of gain, noise, and bandwidth characteristics for 850-nm CMOS silicon avalanche photodetectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(6): 211-217. DOI: 10.1109/JSTQE.2014.2327796
    [16]
    WEN K, TU J J, ZHAO Y L. A balanced optical system for excess noise factor measurement of avalanche photodiode[C]//Asia Communications and Photonics Conference, 2016: DOI: 10.1364/ACPC.2016.AF2A.67.
    [17]
    Webb R P, McIntyre R J, Conradi J, et al. Properties of avalanche photodiodes[J]. R. C. A. Review, 1974, 35(2): 234-278.
    [18]
    KANG Y, Zadka M, Litski S, et al. Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 mm light detection[J]. Optics Express, 2008, 16(13): 9365-9371. DOI: 10.1364/OE.16.009365
    [19]
    Min R, Maddox S J, Woodson M E, et al. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes[J]. Applied Physics Letters, 2016, 108(191108): 1-4.
    [20]
    Watanabe I, Torikai T, Makita K, et al. Impact Ionization Rates in (100) Al0.48In0.52As[J]. IEEE Electron Device Letters, 1990, 11(10): 437-438. DOI: 10.1109/55.62988
    [21]
    BAI X G, YUAN P, Mcdonald P, et al. Development of low excess noise SWIR APDs[C]// Infrared Technology & Applications XXXVIII, 2012, 8353: 83532H.
    [22]
    HU C, Anselm K A, Streetman B G, et al. Noise characteristics of thin multiplication region GaAs avalanche photodiodes[J]. Applied Physics Letters, 1996, 69(24): 3734-3736. DOI: 10.1063/1.117205
    [23]
    Ong D S, LI K F, Rees G J, et al. A simple model to determine multiplication and noise in avalanche photodiodes[J]. Journal of Applied Physics, 1998, 83(6): 3426-3428. DOI: 10.1063/1.367111
    [24]
    YUAN P, WANG S, SUN X, et al. Avalanche photodiodes with an impact-ionization-engineered multiplication region[J]. IEEE Photonics Technology Letters, 2000, 12(10): 1370-1372. DOI: 10.1109/68.883833
    [25]
    DUAN N, WANG S L, MA F, et al. High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region[J]. IEEE Photonics Technology Letters, 2005, 17(8): 1719-1721. DOI: 10.1109/LPT.2005.851903
    [26]
    Burris H R, Ferraro M S, Freeman W T, et al. Development of a large area InGaAs APD receiver based on an impact ionization engineered detector for free-space lasercomm applications[J]. Atmospheric Propagation IX, 2012, 10(12): 1370-1372.
    [27]
    Ferraro M S, Rabinovich W S, Mahon R, et al. Position Sensing and High Bandwidth Data Communication Using Impact Ionization Engineered APD Arrays[J]. IEEE Photonics Technology Letters, 2019, 31(1): 58-61. DOI: 10.1109/LPT.2018.2882886
    [28]
    SUN W L, ZHENG X G, LU Z W, et al. Numerical simulation of InAlAs/ InAlGaAs tandem avalanche photodiodes[C]// IEEE Photonic Society 24th Annual Meeting, 2011: DOI: 10.1109/PHO.2011.6110535.
  • Related Articles

    [1]LI Yin, SONG Yuanjia, JIANG Haijun, CHEN Fei, ZHANG Kai. Low-velocity Impact Damage Detection of Woven Composites Based on Ultrasonic Infrared Thermography[J]. Infrared Technology , 2023, 45(8): 876-883.
    [2]WANG Yi, WANG Hao, WEI Ziyu, WANG Xue. Test of Infrared Radiation Characteristic for Aero-engines Based on Spectral Radiometer[J]. Infrared Technology , 2023, 45(3): 292-297.
    [3]LUO Xiuli, MA Junhui, CHEN Dongqi, CAI Yi, WANG Lingxue, HUANG Pan, WANG Caiping, LUO Hong. Engineering Design of Archimedean Spiral Push-broom Filtering Disk for Multi-band Thermal Imaging[J]. Infrared Technology , 2019, 41(9): 799-805.
    [4]XING Huaichang, XU Jintong, LI Xiangyang. Development of Geiger Mode Circuit with Silicon Avalanche Photodiode for Ultraviolet Optical Communication[J]. Infrared Technology , 2018, 40(10): 966-971.
    [5]The Engineering Arithmetic of the Reflected Infrared Radiation Characteristic for Air-target[J]. Infrared Technology , 2013, (5): 289-294.
    [6]XING Yong, XING Ji-chuan, SONG Yan. Engineering Study on the CCD-based Measurement of Pulse Laser far-field Divergence Angle[J]. Infrared Technology , 2011, 33(9): 525-529. DOI: 10.3969/j.issn.1001-8891.2011.09.008
    [7]WANG Yi-feng, Huang Yan. Analysis of Engineering Feasibility of Spectral Blue-Shift or Red-Shift[J]. Infrared Technology , 2008, 30(5): 286-288. DOI: 10.3969/j.issn.1001-8891.2008.05.011
    [8]HU Jiang-hua, MA Dong-liang, HE-hui, ZHOU Li-feng. The Impact of Target Size on Minimum Temperature Difference Detected by Forward Looking Infrared System[J]. Infrared Technology , 2008, 30(3): 125-127. DOI: 10.3969/j.issn.1001-8891.2008.03.001
    [9]ZHU Ying-feng, XIAO Hui-shan, TAO Yan-ming, LU Yun-peng. The Manufacture of Military Engineering Minisize Split FPA Dewar[J]. Infrared Technology , 2006, 28(1): 59-62. DOI: 10.3969/j.issn.1001-8891.2006.01.015
    [10]ZHAO Peng, YANG Wen-yun, CHENG Jin, JIANG Jun, Kang Rong, ZHU Xi-chen. The Engineered LWIR Detectors of 60 Units With Overlap Contacts[J]. Infrared Technology , 2001, 23(1): 11-14. DOI: 10.3969/j.issn.1001-8891.2001.01.004
  • Cited by

    Periodical cited type(2)

    1. 徐乐凤,孙彬,徐鲁波,黄劲,王和欣. 基于改进高速单光子探测器的复合跟踪控制系统设计. 计算机测量与控制. 2023(03): 155-161 .
    2. 柯程虎,包晶,梁静远,韩美苗,秦欢欢,柯熙政. 探测器及其噪声模型研究进展. 光学技术. 2023(03): 329-348 .

    Other cited types(2)

Catalog

    Article views (567) PDF downloads (102) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return