YANG Baiyu, WU Xiaoliang, WANG Cuixiang, WANG Weiyu, LI Lei, FAN Qi, LIU Jing, XU Cuilian. Determination of Optical Constants of Transparent Solids Based on Double Thickness Transmittance Model of Polynomial Root[J]. Infrared Technology , 2023, 45(9): 969-973.
Citation: YANG Baiyu, WU Xiaoliang, WANG Cuixiang, WANG Weiyu, LI Lei, FAN Qi, LIU Jing, XU Cuilian. Determination of Optical Constants of Transparent Solids Based on Double Thickness Transmittance Model of Polynomial Root[J]. Infrared Technology , 2023, 45(9): 969-973.

Determination of Optical Constants of Transparent Solids Based on Double Thickness Transmittance Model of Polynomial Root

More Information
  • Received Date: December 31, 2022
  • Revised Date: February 14, 2023
  • In determining the optical constants of transparent solids using spectral inversion methods, certain problems such as inversion errors and computational time consumption, have to be solved. This study establishes two spectral transmittance equations with the thickness satisfying the integer ratio based on the traditional double-thickness transmittance model. A polynomial equation related to the extinction coefficient is obtained through an algebraic operation, and the extinction coefficient is calculated by solving and selecting a real root greater than 0 and less than 1. Subsequently, the unitary quadratic equation is solved for interface reflectivity, thereby selecting the roots that are greater than 0 and less than 1 to calculate the refractive index. In the process of determining the optical constants, the new method does not suffer from inversion errors, time-consuming iterative calculations, or multivalue problems. As an application example, the optical constants of CaF2 and Si were calculated using the experimental data of double-thickness transmittance in the literature, and the results were compared with those in the literature. The results show that the new method is superior to traditional spectral inversion methods and provides a new option for high-precision determination of optical constants of transparent solids.
  • [1]
    Tran D, Sigel G, Bendow B. Heavy metal fluoride glasses and fibers: a review[J]. Journal of Lightwave Technology, 1984, 2(5): 566-586. DOI: 10.1109/JLT.1984.1073661
    [2]
    李兴灿. 颗粒混悬液辐射特性参数测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 2-4.

    LI X C. Research on Measurement Method for Radiation Properties of Liquid-Particle Suspensions[D]. Harbin: Harbin Institute of Technology of China, 2017: 2-4.
    [3]
    Khashan M A, El-Naggar A M. A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its Slab[J]. Optics Communications, 2000, 174: 445-453. DOI: 10.1016/S0030-4018(99)00721-X
    [4]
    El-Zaiat, El Sayed Y Y, Youssef G M. Dispersive parameters for complex refractive index of P- and N-Type silicon from spectrophotometric measurements in spectral range 200-2500nm[J]. Opt. Laser Technol., 2015, 65: 106-112. DOI: 10.1016/j.optlastec.2014.07.014
    [5]
    Bridou F, Cuniot-Ponsard M, Jean-Michel D. Experimental determination of optical constants in the vacuum ultra violet wavelength region between 80 and 140 nm: a reflectance versus thickness method and its application to ZnSe[J]. Opt. Commun., 2007, 271: 353-360. DOI: 10.1016/j.optcom.2006.10.042
    [6]
    Dhanasekaran V, Mahalingam T, Rhee J K, et al. Structural and optical properties of electrosynthesized ZnSe thin films[J]. Optik, 2013, 124(3): 255-260. DOI: 10.1016/j.ijleo.2011.11.063
    [7]
    王贵全, 张锦荣, 邵毅, 等. 基于透射光谱的类金刚石膜光学参数反演[J]. 红外技术, 2021, 43(5): 473-477. http://hwjs.nvir.cn/article/id/916a8eda-7b0a-4936-a8e2-e659b75abb96

    WANG G, ZHANG J, SHAO Y, et al. Calculation of optical parameters of diamond-like carbon film based on transmission spectrum [J]. Infrared Technology, 2021, 43(5): 473-477. http://hwjs.nvir.cn/article/id/916a8eda-7b0a-4936-a8e2-e659b75abb96
    [8]
    侯典心, 路远, 宋福印. 基于全光谱拟合法的VO2薄膜光学常数计算[J]. 红外技术, 2017, 39(3): 243-249. http://hwjs.nvir.cn/article/id/hwjs201703008

    HOU D, LU Y, SONG F. Optical constants of VO2 thin films based on whole optical spectrum fitting[J]. Infrared Technology, 2017, 39(3): 243-249. http://hwjs.nvir.cn/article/id/hwjs201703008
    [9]
    Regalado L E, Machorro R, Siqueiros J M. Attenuated-total-reflection technique for the determination of optical constants[J]. Applied Optics, 1991, 30(22): 3176-3180. DOI: 10.1364/AO.30.003176
    [10]
    Lousinian S, Logothetidis S. In-situ and real-time protein adsorption study by spectroscopic ellipsometry[J]. Thin Solid Films, 2008, 516(22): 8002-8008. DOI: 10.1016/j.tsf.2008.04.043
    [11]
    WANG Z, XIAO J, ZI M A. Study of mid-infrared optical properties of ZnS thin films by spectroscopic ellipsometry[J]. Materials Review, 2015, 2(1): 44-49.
    [12]
    Tuntomo A, Tien C L, Park S H. Optical constants of liquid hydrocarbon fuels[J]. Combustion Science and Technology, 1992, 84: 1-6, 133-140. DOI: 10.1080/00102209208951841
    [13]
    李全葆, 宋炳文, 魏天衢. Hg(1-x)CdxTe光学常数测量[J]. 红外技术, 1991, 13(5): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS199105004.htm

    LI Q B, SONG B W, WEI T Q. The measurement of optical constants of Hg(1-x)CdxTe [J]. Infrared Technology, 1991, 13(5): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS199105004.htm
    [14]
    李栋, 艾青, 夏新林. 利用透射光谱反演硒化锌的光学常数[J]. 光谱学与光谱分析, 2013, 33(4): 930-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201304019.htm

    LI D, AI Q, XIA X L. optical constants determination of Zinc Selenide by inversing transmittance spectrogram[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 930-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201304019.htm
    [15]
    LI D, AI Q, XIA X. Measured optical constants of ZnSe Glass from 0.83 μm to 2.20 μm by a novel transmittance method[J]. Optik, 2013, 124(21): 5177-5180. DOI: 10.1016/j.ijleo.2013.04.001
    [16]
    QI H, ZHANG X, JIANG M, et al. Optical properties of Zinc Selenide Slabs at 373 and 423 K in the wavelength 2–15 μm[J]. Optik, 2016, 127(14): 5576-5584. DOI: 10.1016/j.ijleo.2016.03.079
    [17]
    HU X, XU T, ZHOU L, et al. Comparison of transmittance and reflection methods for solving optical constants of optical glass[J]. Optik, 2019, 183: 924-932. DOI: 10.1016/j.ijleo.2018.12.115
    [18]
    LI X, WANG C, ZHAO J, et al. A new method for determining the optical constants of highly transparent solids[J]. Appl. Spectrosc, 2017, 71(1): 70–77. DOI: 10.1177/0003702816657568
    [19]
    LI X, XIE B, WU M, et al. Visible-to-near-infrared optical properties of protein, lipid and carbohydrate in both solid and solution state at room temperature[J]. J. Quant. Spectrosc. Radiat. Transfer., 2021, 259: 107410. DOI: 10.1016/j.jqsrt.2020.107410
    [20]
    Mai H V, Jaffré A, Doan K M, et al. A new simple analytical method for a highly accurate determination of the optical parameters of a slab from transmittance data[J]. Applied Spectroscopy, 2022, 76(5): 590-598. DOI: 10.1177/00037028211068078
    [21]
    杨百愚, 武晓亮, 王翠香, 等. 基于多项式求根的双厚度透射率模型确定光学常数[J]. 红外技术, 2023, 45(1): 91-94. http://hwjs.nvir.cn/article/id/63b8b920-af6a-4eb7-9cfb-258fd5c05206

    YANG B, WU X, WANG C, et al. Determination of optical constants by double thickness transmittance model based on polynomial root[J]. Infrared Technology, 2023, 45(1): 91-94. http://hwjs.nvir.cn/article/id/63b8b920-af6a-4eb7-9cfb-258fd5c05206
    [22]
    Bohren C F, Huffman D R. Absorption and scattering of light by small particles[J]. John Wiley & Sons, 1983, 35(3): 36-41.
  • Cited by

    Periodical cited type(6)

    1. 林斌,刘亚军,吴燕东,董晋国. 煤矿带式输送机自换电巡检机器人关键技术研究. 煤炭技术. 2025(03): 248-250 .
    2. 常凯旋,黄建华,孙希延,罗键,包世涛,黄焕生. 基于双模态图像融合的无人机光学小目标检测算法. 激光与光电子学进展. 2025(04): 279-293 .
    3. 宋冬梅. 基于模糊数学理论的灰度图像边缘信息智能检测方法. 电子设计工程. 2025(08): 130-135 .
    4. 杨家全,李邦源,丁贞煜,马文龙,汪航,孙宏滨. 基于多重先验的无监督学习红外图像增强算法. 云南电力技术. 2024(02): 33-40 .
    5. 贺养慧. 基于生成对抗网络的可见光和红外图像融合研究. 激光杂志. 2024(10): 120-124 .
    6. 周君,高焱,姜晴. 双边滤波下的低光照激光雷达图像超分辨增强技术. 激光杂志. 2024(12): 131-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return