Citation: | YANG Baiyu, WU Xiaoliang, WANG Cuixiang, WANG Weiyu, LI Lei, FAN Qi, LIU Jing, XU Cuilian. Determination of Optical Constants of Transparent Solids Based on Double Thickness Transmittance Model of Polynomial Root[J]. Infrared Technology , 2023, 45(9): 969-973. |
[1] |
Tran D, Sigel G, Bendow B. Heavy metal fluoride glasses and fibers: a review[J]. Journal of Lightwave Technology, 1984, 2(5): 566-586. DOI: 10.1109/JLT.1984.1073661
|
[2] |
李兴灿. 颗粒混悬液辐射特性参数测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 2-4.
LI X C. Research on Measurement Method for Radiation Properties of Liquid-Particle Suspensions[D]. Harbin: Harbin Institute of Technology of China, 2017: 2-4.
|
[3] |
Khashan M A, El-Naggar A M. A new method of finding the optical constants of a solid from the reflectance and transmittance spectrograms of its Slab[J]. Optics Communications, 2000, 174: 445-453. DOI: 10.1016/S0030-4018(99)00721-X
|
[4] |
El-Zaiat, El Sayed Y Y, Youssef G M. Dispersive parameters for complex refractive index of P- and N-Type silicon from spectrophotometric measurements in spectral range 200-2500nm[J]. Opt. Laser Technol., 2015, 65: 106-112. DOI: 10.1016/j.optlastec.2014.07.014
|
[5] |
Bridou F, Cuniot-Ponsard M, Jean-Michel D. Experimental determination of optical constants in the vacuum ultra violet wavelength region between 80 and 140 nm: a reflectance versus thickness method and its application to ZnSe[J]. Opt. Commun., 2007, 271: 353-360. DOI: 10.1016/j.optcom.2006.10.042
|
[6] |
Dhanasekaran V, Mahalingam T, Rhee J K, et al. Structural and optical properties of electrosynthesized ZnSe thin films[J]. Optik, 2013, 124(3): 255-260. DOI: 10.1016/j.ijleo.2011.11.063
|
[7] |
王贵全, 张锦荣, 邵毅, 等. 基于透射光谱的类金刚石膜光学参数反演[J]. 红外技术, 2021, 43(5): 473-477. http://hwjs.nvir.cn/article/id/916a8eda-7b0a-4936-a8e2-e659b75abb96
WANG G, ZHANG J, SHAO Y, et al. Calculation of optical parameters of diamond-like carbon film based on transmission spectrum [J]. Infrared Technology, 2021, 43(5): 473-477. http://hwjs.nvir.cn/article/id/916a8eda-7b0a-4936-a8e2-e659b75abb96
|
[8] |
侯典心, 路远, 宋福印. 基于全光谱拟合法的VO2薄膜光学常数计算[J]. 红外技术, 2017, 39(3): 243-249. http://hwjs.nvir.cn/article/id/hwjs201703008
HOU D, LU Y, SONG F. Optical constants of VO2 thin films based on whole optical spectrum fitting[J]. Infrared Technology, 2017, 39(3): 243-249. http://hwjs.nvir.cn/article/id/hwjs201703008
|
[9] |
Regalado L E, Machorro R, Siqueiros J M. Attenuated-total-reflection technique for the determination of optical constants[J]. Applied Optics, 1991, 30(22): 3176-3180. DOI: 10.1364/AO.30.003176
|
[10] |
Lousinian S, Logothetidis S. In-situ and real-time protein adsorption study by spectroscopic ellipsometry[J]. Thin Solid Films, 2008, 516(22): 8002-8008. DOI: 10.1016/j.tsf.2008.04.043
|
[11] |
WANG Z, XIAO J, ZI M A. Study of mid-infrared optical properties of ZnS thin films by spectroscopic ellipsometry[J]. Materials Review, 2015, 2(1): 44-49.
|
[12] |
Tuntomo A, Tien C L, Park S H. Optical constants of liquid hydrocarbon fuels[J]. Combustion Science and Technology, 1992, 84: 1-6, 133-140. DOI: 10.1080/00102209208951841
|
[13] |
李全葆, 宋炳文, 魏天衢. Hg(1-x)CdxTe光学常数测量[J]. 红外技术, 1991, 13(5): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS199105004.htm
LI Q B, SONG B W, WEI T Q. The measurement of optical constants of Hg(1-x)CdxTe [J]. Infrared Technology, 1991, 13(5): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS199105004.htm
|
[14] |
李栋, 艾青, 夏新林. 利用透射光谱反演硒化锌的光学常数[J]. 光谱学与光谱分析, 2013, 33(4): 930-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201304019.htm
LI D, AI Q, XIA X L. optical constants determination of Zinc Selenide by inversing transmittance spectrogram[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 930-934. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201304019.htm
|
[15] |
LI D, AI Q, XIA X. Measured optical constants of ZnSe Glass from 0.83 μm to 2.20 μm by a novel transmittance method[J]. Optik, 2013, 124(21): 5177-5180. DOI: 10.1016/j.ijleo.2013.04.001
|
[16] |
QI H, ZHANG X, JIANG M, et al. Optical properties of Zinc Selenide Slabs at 373 and 423 K in the wavelength 2–15 μm[J]. Optik, 2016, 127(14): 5576-5584. DOI: 10.1016/j.ijleo.2016.03.079
|
[17] |
HU X, XU T, ZHOU L, et al. Comparison of transmittance and reflection methods for solving optical constants of optical glass[J]. Optik, 2019, 183: 924-932. DOI: 10.1016/j.ijleo.2018.12.115
|
[18] |
LI X, WANG C, ZHAO J, et al. A new method for determining the optical constants of highly transparent solids[J]. Appl. Spectrosc, 2017, 71(1): 70–77. DOI: 10.1177/0003702816657568
|
[19] |
LI X, XIE B, WU M, et al. Visible-to-near-infrared optical properties of protein, lipid and carbohydrate in both solid and solution state at room temperature[J]. J. Quant. Spectrosc. Radiat. Transfer., 2021, 259: 107410. DOI: 10.1016/j.jqsrt.2020.107410
|
[20] |
Mai H V, Jaffré A, Doan K M, et al. A new simple analytical method for a highly accurate determination of the optical parameters of a slab from transmittance data[J]. Applied Spectroscopy, 2022, 76(5): 590-598. DOI: 10.1177/00037028211068078
|
[21] |
杨百愚, 武晓亮, 王翠香, 等. 基于多项式求根的双厚度透射率模型确定光学常数[J]. 红外技术, 2023, 45(1): 91-94. http://hwjs.nvir.cn/article/id/63b8b920-af6a-4eb7-9cfb-258fd5c05206
YANG B, WU X, WANG C, et al. Determination of optical constants by double thickness transmittance model based on polynomial root[J]. Infrared Technology, 2023, 45(1): 91-94. http://hwjs.nvir.cn/article/id/63b8b920-af6a-4eb7-9cfb-258fd5c05206
|
[22] |
Bohren C F, Huffman D R. Absorption and scattering of light by small particles[J]. John Wiley & Sons, 1983, 35(3): 36-41.
|
[1] | LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754. |
[2] | LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713. |
[3] | ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512. |
[4] | HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088. |
[5] | CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403. |
[6] | YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221. |
[7] | LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664. |
[8] | JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77. |
[9] | LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61. |
[10] | FAN Ming-zhe, WANG Lu-ping, ZHANG Lu-ping. Regional Detection Algorithm Based on Double Error Reconstruction[J]. Infrared Technology , 2015, 37(11): 962-969. |
1. |
靳铁柱,刘生彦. 改进背景减法下人体运动模糊图像检测仿真. 计算机仿真. 2025(03): 304-308 .
![]() | |
2. |
王封疆,王梦飞,周杰. 基于CHEBWO的多目标棉田图像增强算法. 石河子大学学报(自然科学版). 2024(04): 505-513 .
![]() | |
3. |
张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 .
![]() |