Citation: | KOU Renke, WANG Chunping, ZHANG Yong, TANG Panpan, HUANG Fuyu, FU Qiang. Performance Evaluation Methods for Infrared Detection Systems: a Review[J]. Infrared Technology , 2024, 46(12): 1411-1417. |
Infrared detection is a passive detection technology with the potential to supplement radar in identifying targets. A crucial metric for this technology is its operating range, which has been a challenging yet popular area of research to evaluate. Considering the varied and starkly contrasting methods for assessing the performance of infrared detection systems, this review offers a thorough summary of existing evaluation techniques and categorizes them into five groups: visual inspection, laboratory calibration, field measurement, simulation evaluation, and cross-validation. In addition, a detailed analysis of the strengths and weaknesses of each evaluation method is provided. Finally, the challenges and future trends in this field are discussed and analyzed. This review is beneficial for beginners to start quickly and also provides a reference for further research in this field.
[1] |
KOU R K, WANG H Y ZHAO Z H, et al. Optimum selection of detection point and threshold noise ratio of airborne infrared search and track systems [J]. Applied Optics, 2017, 56(18): 5268-5273. DOI: 10.1364/AO.56.005268
|
[2] |
KOU R K, WANG C P, FU Q, et al. Detection model and performance evaluation for the IR search and tracking system [J]. Applied Optics, 2023, 62(2): 398-410. DOI: 10.1364/AO.469807
|
[3] |
叶振华, 李辉豪, 胡伟达, 等. 红外光电探测器的前沿热点与变革趋势[J]. 红外与毫米波学报, 2022, 41(10): 15-39.
YE Z H, LI H H, HU W D, et al. Recent hotspots and innovative trends of infrared photon detectors[J]. Journal of Infrared and Millmeter Waves, 2022, 41(10): 15-39.
|
[4] |
李战武, 常一哲, 孙源源, 等. 中远距协同空战多目标攻击决策[J]. 火力与指挥控制, 2016, 41(2): 36-40. DOI: 10.3969/j.issn.1002-0640.2016.02.010
LI Z W, CHANG Y Z, SUN Y Y, et al. A decision-making for multiple target attack based on characteristic of future long-range cooperative air combat[J]. Fire Control & Command Control, 2016, 41(2): 36-40. DOI: 10.3969/j.issn.1002-0640.2016.02.010
|
[5] |
吴晗平. 红外搜索系统[M]. 北京: 国防工业出版社, 2013: 32-36.
WU H P. Infrared Search System[M]. Beijing: National Defense Industry Press, 2013: 32-36.
|
[6] |
张建奇, 王晓蕊. 光电成像系统建模及性能评估理论[M]. 西安: 西安电子科技大学出版社, 2010: 351-379.
ZHANG J Q, WANG X X. Theory of Modeling and Performance Evaluation for Optoelectronic Imaging Systems[M]. Xi'an: Xi'an University of Electronic Science and Technology Press, 2010: 351-379.
|
[7] |
D'Agostino J, Webb C. Three-dimensional analysis framework and measurement methodology for imaging system noise[C]//Proceedings of SPIE, 1991, 1488: 110-121.
|
[8] |
Burks S D, Haefner D P, Burks T J. Signal intensity transfer function determination on thermal systems with stray light or scattering present[C]//Proc. of SPIE on Defense+Security, 2015, 9452: 39-48.
|
[9] |
Singh M, Khare S, Kaushik B K. Objective evaluation method for advance thermal imagers based on minimum resolvable temperature difference[J]. Journal of Optics, 2020, 49(1): 94-101. DOI: 10.1007/s12596-019-00584-4
|
[10] |
徐泽林, 路东明, 王利平, 等. 利用灰度差估计的条纹非均匀性校正方法[J]. 光学学报, 2021, 41(5): 0511001.
XU Z L, LU D M, WANG L P, et al. Fringe non-uniformity correction method based on gray difference estimation[J]. Acta Optica Sinica, 2021, 41(5): 0511001.
|
[11] |
丁帅. 机载红外小目标探测系统非均匀性校正技术研究[D]. 北京: 中国科学院大学, 2021.
DING S. Research on non-uniformity correction technology of airborne infrared small target detection system[D]. Beijing: University of Chinese Academy of Sciences, 2021.
|
[12] |
XU L, YANG H. Application of a nonuniformity correction algorithm for IRFPAs based on two points[J]. Infrared and Laser Engineering, 2008, 37(S2): 608-610. http://search.cnki.net/down/default.aspx?filename=HWYJ2008S2064&dbcode=CJFD&year=2008&dflag=pdfdown
|
[13] |
代少升, 李季碧, 张天骐, 等. 红外焦平面阵列成像及其非均匀性校正技术[M]. 北京: 科学出版社, 2015.
DAI S S, LI J B, ZHANG T Q, et al. Infrared Focal Plane Array Imaging and Its Non-Uniformity Correction Technology [M]. Beijing: Science Press, 2015.
|
[14] |
李言旭, 孙德新, 刘银年. 基于多项式拟合的红外焦平面非均匀性校正[J]. 激光与红外, 2005, 35(2): 104-107. DOI: 10.3969/j.issn.1001-5078.2005.02.012
LI Y X, SUN D X, LIU Y N. Polynomial fitting based on nonuniformity correction of infrared focal plane arrays[J]. Laser & Infrared, 2005, 35(2): 104-107. DOI: 10.3969/j.issn.1001-5078.2005.02.012
|
[15] |
Narendra P M. Scene-based nonuniformity compensation for imaging sensors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982(1): 57-61. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4767196
|
[16] |
周永康, 朱尤攀, 赵德利, 等. 基于场景的红外焦平面非均匀校正算法综述[J]. 红外技术, 2018, 40(10): 952-960. DOI: 10.3321/j.issn:1002-1582.2008.z1.054
ZHOU Y K, ZHU Y P, ZHAO D L, et al. A review of scene-based nonuniformity correction algorithms for infrared focal plane arrays[J]. Infrared Technology, 2018, 40(10): 952-960. DOI: 10.3321/j.issn:1002-1582.2008.z1.054
|
[17] |
Torres S N, Vera E M, Reeves R A, et al. Adaptive scene-based nonuniformity correction method for infrared-focal plane arrays[C]// Proc. of SPIE, 2003, 5076: 130-139.
|
[18] |
Scribner D A, Sarkady K A, Kruer M R, et al. Adaptive nonuniformity correction for IR focal plane arrays using neural networks[J]. Proceedings of SPIE, 1991, 1541: 100-109. DOI: 10.1117/12.49324
|
[19] |
刘博, 张斌, 王海晏. IRST作用距离标定方法研究[J]. 红外技术, 2006, 28(11): 633-635. DOI: 10.3969/j.issn.1001-8891.2006.11.004
LIU B, ZHANG B, WANG H Y. A new method for demarcating acceptance range of IRST[J]. Infrared Technology, 2006, 28(11): 633-635. DOI: 10.3969/j.issn.1001-8891.2006.11.004
|
[20] |
王领, 于雷, 寇添, 等. 机载红外搜索跟踪系统探测性能评测标定[J]. 国防科技大学学报, 2015, 37(5): 192-198.
WANG L, YU L, KOU T, et al. Evaluation and calibration of operational capability to airborne IRST system[J]. Journal of National University of Defense Technology, 2015, 37(5): 192-198.
|
[21] |
王芳, 寇人可, 罗寰, 等. 机载光电雷达性能测试系统的设计[J]. 激光与光电子学进展, 2019, 56(1): 010101.
WANG F, KOU R K, LUO H, et al. Design of airborne photoelectric radar performance test system[J]. Laser & Optoelectronics Progress, 2019, 56(1): 010101.
|
[22] |
杨森, 张厚庆. 基于成像/光强变化响应的中/短波红外辐射校准系统设计[J]. 光学学报, 2022, 42(6): 0611001.
YANG S, ZHANG H Q. Design of medium/short wave infrared radiation calibration system based on imaging/light intensity change response[J]. Acta Optica Sinica, 2022, 42(6): 0611001.
|
[23] |
王琦, 张继旭, 曹艳霞. 红外探测系统作用距离试验与评估方法[J]. 火力与指挥控制, 2012, 37(7): 192-195. DOI: 10.3969/j.issn.1002-0640.2012.07.051
WANG Q, ZHANG J X, CAO Y X. A study on action range test and evaluated method for infrared detector[J]. Fire Control & Command Control, 2012, 37(7): 192-195. DOI: 10.3969/j.issn.1002-0640.2012.07.051
|
[24] |
牟达, 韩红霞. 红外系统作用距离方程的比较与分析[J]. 长春理工大学学报: 自然科学版, 2012, 35(4): 0005-0008.
MOU D, HAN H X. Comparison and analysis for operating range equations of infrared system[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2012, 35(4): 0005-0008.
|
[25] |
王晓剑, 刘扬, 陈蕾, 等. 基于NETD和ΔT红外点源目标作用距离方程的讨论[J]. 红外与激光工程, 2008, 37(6): 493-496.
WANG X J, LIU Y, CHEN L, et al. Discussion on the operation range of the infrared imaging system for point target expressed by NETD and ∆T[J]. Infrared and Laser Engineering, 2008, 37(6): 493-496.
|
[26] |
高思峰, 吴平, 何曼丽, 等. 复杂大气条件下红外系统作用距离的估算[J]. 红外与激光工程, 2008, 37(6): 941-945. DOI: 10.3969/j.issn.1007-2276.2008.06.001
GAO S F, WU P, HE M L, et al. Estimation of the operating range of infrared systems under complex atmospheric conditions [J]. Infrared and Laser Engineering, 2008, 37(6): 941-945. DOI: 10.3969/j.issn.1007-2276.2008.06.001
|
[27] |
王卫杰, 黄俭, 袁光福, 等. 空基红外系统作用距离建模及应用分析[J]. 光学精密工程, 2020, 28(6): 1295-1302.
WANG W J, HUANG J, YUAN G F, et al. Modeling and application analysis of operating range of air-based infrared system[J]. Optics and Precision Engineering, 2020, 28(6): 1295-1302.
|
[28] |
Gaitanakis G K, Vlastaras A, Vassos N, et al. Infrared search & track systems as an anti-stealth approach[J]. Journal of Computations & Modelling, 2019, 9(1): 33-53.
|
[29] |
Knežević D, Redjimi A, Mišković K, et al. Minimum resolvable temperature difference model, simulation, measurement and analysis[J]. Optical and Quantum Electronics, 2016, 48(6): 332. DOI: 10.1007/s11082-016-0598-7
|
[30] |
Driggers R, Pollak E, Grimming R, et al. Detection of small targets in the infrared: an infrared search and track tutorial[J]. Applied Optics, 2021, 60(16): 4762-4777. DOI: 10.1364/AO.424767
|
[31] |
寇人可, 王春平, 张勇, 等. 基于交叉验证的红外探测系统作用距离评估方法研究[J]. 火力与指挥控制, 2024, 49(11): 46-53.
KOU R K, WANG C P, ZHANG Y, et al. Research on the operation range evaluation method of infrared detection system based on cross validation[J]. Fire Control & Command Control, 2024, 49(11): 46-53.
|
[1] | DAI Zikuo, SHI Kejian, SONG Shida, LIU Yang, XU Yan. Reliability Image Recognition Method for High Temperature Operation of Power Stabilizer in Medium and Low Voltage Grids Based on Infrared Imaging[J]. Infrared Technology , 2023, 45(12): 1351-1357. |
[2] | YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505. |
[3] | CAO Yutong, HUAN Kewei, XUE Chao, HAN Fengdi, LI Xiangyang, CHEN Xiao. Infrared and Visible Image Fusion Based on CNN with NSCT[J]. Infrared Technology , 2023, 45(4): 378-385. |
[4] | XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20. |
[5] | DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, YU Wen. Infrared and Visible Image Fusion Based on Convolutional Neural Network[J]. Infrared Technology , 2020, 42(7): 660-669. |
[6] | LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80. |
[7] | GAO Jun, JING Yiguo. A Fully Convoluted Neural Network-based Cloud Detection Method for Satellite Remote Sensing Images[J]. Infrared Technology , 2019, 41(7): 607-615. |
[8] | Document Image Classification Based on Improved Local Binary Patterns[J]. Infrared Technology , 2014, (10): 827-831. |
[9] | XU Xiang-jun, WANG Sheng-peng, JI Qing-chun, LIU Dong-fang, QIAN Wei-dong, YU Jie, YAN Ya-jing. Insulator Infrared Image Recognition Method Based on Gaussian Scale-space and GHT[J]. Infrared Technology , 2014, (7): 596-599. |
[10] | The Study of Feature Extraction Used to Recognize Incomplete Image for Imaging Fuze[J]. Infrared Technology , 2001, 23(5): 20-23,28. DOI: 10.3969/j.issn.1001-8891.2001.05.007 |
1. |
聂磊,武丽丽,黄一凡,刘梦然,刘江林. 基于红外图像分析的TSV内部缺陷识别方法研究. 仪表技术与传感器. 2023(01): 38-43 .
![]() | |
2. |
刘凯. 基于红外图像识别技术的道路与桥梁故障诊断. 计算技术与自动化. 2022(03): 105-110 .
![]() | |
3. |
沈九美,邱建林. 基于光散射的图形元素视觉整合系统. 激光杂志. 2022(10): 62-66 .
![]() |