ZHANG Pengcheng, HE Mingxia, CHEN Shuo, ZHANG Hongzhen, ZHANG Xinxin. Terahertz Image Enhancement Based on Generative Adversarial Network[J]. Infrared Technology , 2021, 43(4): 391-396.
Citation: ZHANG Pengcheng, HE Mingxia, CHEN Shuo, ZHANG Hongzhen, ZHANG Xinxin. Terahertz Image Enhancement Based on Generative Adversarial Network[J]. Infrared Technology , 2021, 43(4): 391-396.

Terahertz Image Enhancement Based on Generative Adversarial Network

More Information
  • Received Date: September 28, 2019
  • Revised Date: November 03, 2019
  • In terahertz scanning imaging, the image contrast is low due to laser power fluctuation and instrument vibration, and the imaging quality needs to be improved. At present, the processing of terahertz image is still in the traditional algorithm stage. In this paper, an image enhancement method based on Generative Adversarial Network is proposed, which includes the idea of deep learning. By introducing blur and noise into the training set image, the mapping relationship between low-quality images and high-quality images is learned and applied to real terahertz images. The experimental results show that, compared with traditional algorithms such as bilateral filtering and non-local mean filtering, this method can significantly improve the image contrast on the basis of improving image details, and has a good visual sense, which provides a new idea for terahertz image enhancement.
  • [1]
    郑显华, 王新柯, 孙文峰, 等. 太赫兹数字全息术的研发与应用[J]. 中国激光, 2014, 41(2): 0209003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201402004.htm

    ZHENG Xianhua, WANG Xinke, SUN Wenfeng, et al. Developments and applications of the terahertz digital holography[J]. Chinese J. Lasers, 2014, 41(2): 0209003. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201402004.htm
    [2]
    张馨, 赵源萌, 张存林. 被动式太赫兹图像分割算法[J]. 强激光与粒子束, 2013, 25(6): 1597-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201306056.htm

    ZHANG Xin, ZHAO Yuanmeng, ZHANG Cunlin. Passive terahertz image segmentation algorithm[J]. High Power Laser and Particle Beams, 2013, 25(6): 1597-1600. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201306056.htm
    [3]
    徐利民. 高分辨太赫兹图像处理[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2013.

    XU Limin. High Resolution Terahertz Image Processing[D]. Xi an: University of Chinese Academy of Sciences (Xi'an Institute of Optics and Precision Mechanics), 2013.
    [4]
    李琦, 杨永发, 胡佳琦. 一种用于太赫兹共焦扫描图像复原的复合算法[J]. 红外与激光工程, 2015, 44(1): 321-326. DOI: 10.3969/j.issn.1007-2276.2015.01.055

    LI Qi, YANG Yongfa, HU Jiaqi. A composite algorithm used for terahertz confocal scanning image restoration[J]. Infrared and Laser Engineering, 2015, 44(1): 321-326. DOI: 10.3969/j.issn.1007-2276.2015.01.055
    [5]
    杨永发, 李琦. 双边滤波算法的太赫兹共焦扫描图像去噪应用[J]. 激光与光电子学进展, 2015, 52(12): 121101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201512015.htm

    YANG Yongfa, LI Qi. Application of bilateral filtering algorithm on terahertz confocal scanning image denoising[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201512015.htm
    [6]
    DONG C, CHEN C L, HE K, et al. Learning a Deep Convolutional Network for Image Super-Resolution[M]//Computer Vision – ECCV Springer International Publishing, 2014: 184-199.
    [7]
    Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2017: 4681-4690.
    [8]
    卢贺洋, 苏胜君, 袁明辉, 等. 太赫兹图像的超分辨率重建[J]. 红外技术, 2019, 41(1): 59-63. http://hwjs.nvir.cn/article/id/hwjs201901009

    LU Heyang, SU Shengjun, YUN Minghui, et al. Super-resolution reconstruction of terahertz image[J]. Infrared Technology, 2019, 41(1): 59-63. http://hwjs.nvir.cn/article/id/hwjs201901009
    [9]
    Johnson J, Alahi A, LI F. Perceptual losses for real-time style transfer and super-resolution[C]//In European Conference on Computer Vision (ECCV), Springer, 2016: 694-711.
    [10]
    Gross S, Wilber M. Training and investigating residual nets, online[EB/OL]. [2016-02-04]. http://torch.ch/blog/.
    [11]
    Shi W, Caballero J, Huszar F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 1874-1883.
    [12]
    Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[C]// International Conference on Learning Representations (ICLR), 2016: 1-16.
    [13]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations (ICLR), 2015: 268-282.
    [14]
    Bruna J, Sprechmann P, Lecun Y. Super-resolution with deep convolutional sufficient statistics[C]//International Conference on Learning Representations (ICLR), 2016: 352-369.
    [15]
    Gatys L A, Ecker A S, Bethge M. Texture synthesis using convolutional neural networks[C]//Advances in Neural Information Processing Systems (NIPS), 2015: 262-270.
    [16]
    Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems (NIPS), 2014: 2672-2680.
  • Related Articles

    [1]LYU Zongwang, NIU Hejie, SUN Fuyan, ZHEN Tong. Review of Research on Low-Light Image Enhancement Algorithms[J]. Infrared Technology , 2025, 47(2): 165-178.
    [2]WANG Zhen, LIU Lei. Infrared Image Enhancement for Power Equipment Based on Fusion Color Model Space[J]. Infrared Technology , 2024, 46(2): 225-232.
    [3]LIU Zhengnan, LIU Chunjing. Image Enhancement Algorithm Based on Texture Prior and Color Clustering[J]. Infrared Technology , 2023, 45(9): 932-940.
    [4]LIAN Cheng, ZHANG Baohui, JIANG Yunfeng, JIANG Zhifang, ZHANG Qian, YUAN Xilin. An Infrared Image Enhancement Method Based on Semantic Segmentation[J]. Infrared Technology , 2023, 45(4): 394-401.
    [5]YOU Dazhang, TAO Jiatao, ZHANG Yepeng, ZHANG Min. Low-light Image Enhancement Based on Gray Scale Transformation and Improved Retinex[J]. Infrared Technology , 2023, 45(2): 161-170.
    [6]MA Lu. Low-light Image Enhancement Based on Multi-scale Wavelet U-Net[J]. Infrared Technology , 2022, 44(4): 410-420.
    [7]CHENG Tiedong, LU Xiaoliang, YI Qiwen, TAO Zhengliang, ZHANG Zhizhao. Research on Infrared Image Enhancement Method Combined with Single-scale Retinex and Guided Image Filter[J]. Infrared Technology , 2021, 43(11): 1081-1088.
    [8]WU Ling, CHEN Niannian, LIAO Xiaohua. Infrared Image Enhancement Based on Regional Adaptive Multiscale Intense Light Fusion[J]. Infrared Technology , 2020, 42(11): 1072-1076, 1080.
    [9]ZHANG Long, DONG Feng, FU Yutian. Non-uniformity Correction for Infrared Image Using Neural Networks[J]. Infrared Technology , 2018, 40(2): 164-169.
    [10]CHEN Guo-jin, ZHU Miao-fen, SHI Hu-li. Study on Image Definition Identification Based on Wavelet Transform and Neural Network[J]. Infrared Technology , 2007, 29(11): 670-674. DOI: 10.3969/j.issn.1001-8891.2007.11.013
  • Cited by

    Periodical cited type(3)

    1. 王智军,郭艳光,王鹏. 最小生成树分割下小样本图像纹理提取研究. 计算机仿真. 2024(02): 227-231 .
    2. 公希萌,赵亮凯. 基于三维激光视觉技术的平面设计图像增强和优化研究. 激光杂志. 2023(04): 158-163 .
    3. 何智博,曾祥进,邓晨,宋彭彭. 基于局部熵-局部对比度和双区域直方图均衡化的红外图像增强. 红外技术. 2023(06): 598-604 . 本站查看

    Other cited types(2)

Catalog

    Article views (416) PDF downloads (61) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return