Citation: | LI Shilong, JIAO Gangcheng. Prepared Test and Analysis of Graphene Photocathode by the Spin Coating Method[J]. Infrared Technology , 2024, 46(12): 1459-1463. |
In this study, the properties of graphene photocathodes were investigated using a modified Hummers' method enhanced by ultrasonic and hot water treatments to synthesize graphene powder. This powder, serving as a precursor, was used to form graphene films on the glass substrates of the photocathode window via spin coating. Subsequently, annular Ni/Cr electrodes were fabricated by electron-beam evaporation, resulting in the assembly of the graphene photocathode. Comprehensive analyses of photocathodes subjected to various preparation and processing techniques were conducted using atomic force microscopy, spectrophotometry, four-point probing, and photoluminescence testing. The results indicate that both the increased dispersion concentration and subsequent temperature reduction treatments significantly enhanced the absorption rate of the photocathode. Importantly, high-temperature reduction not only improves the surface smoothness of the photocathode assembly but also maintains the integrity of its crystal structure, reducing defects. This contributes positively to enhancing the emission characteristics of the graphene photocathode.
[1] |
LEE C, WEI X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, V321(5887): 385-388. http://sbpmat.org.br/icam2009dir/submission/autor/arquivos/B510.pdf
|
[2] |
HU J, RUAN X, CHEN Y P, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study[J]. Nano Letters, 2009, 9(7): 2730-2735. DOI: 10.1021/nl901231s
|
[3] |
韩天亮, 唐利斌, 左文彬, 等. 石墨烯异质结及其光电器件的研究进展[J]. 红外技术, 2021, 43(12): 1141-1157. http://hwjs.nvir.cn/article/id/2b5c1c4c-eabf-48e0-9c16-63fb546f1ad1
HAN Tianliang, TANG Libin, ZUO Wenbin, et al. Photoelectric properties and applications of graphene research progress of graphene heterojunctions and their optoelectronic devices[J]. Infrared Technology, 2021, 43(12): 1141-1157. http://hwjs.nvir.cn/article/id/2b5c1c4c-eabf-48e0-9c16-63fb546f1ad1
|
[4] |
韩钦, 高恺聪, 任思伟, 等. 石墨烯与典型光导型光电探测器读出电路的对比研究[J]. 红外技术, 2022, 44(2): 123-128. http://hwjs.nvir.cn/article/id/5adff991-e442-4aa2-925d-ba8ee1829af7
HAN Qin, GAO Kaicong, REN Siwei, et al. Photoelectric properties and applications of graphene comparative study on readout circuit for graphene and typical photoconductors photodetectors[J]. Infrared Technology, 2022, 44(2): 123-128. http://hwjs.nvir.cn/article/id/5adff991-e442-4aa2-925d-ba8ee1829af7
|
[5] |
何峰, 徐波, 蓝镇立, 等. 基于石墨烯/硅微米孔阵列异质结的高性能近红外光探测器[J]. 红外技术, 2022, 44(11): 1236-1242. http://hwjs.nvir.cn/article/id/be1f2961-acd4-4320-b738-3ddd1c979a77
HE Feng, XU Bo, LAN Zhengli, et al. High-Performance near-infrared photodetector based on a graphene/silicon microholes array heterojunction[J]. Infrared Technology, 2022, 44(11): 1236-1242. http://hwjs.nvir.cn/article/id/be1f2961-acd4-4320-b738-3ddd1c979a77
|
[6] |
王博, 唐利斌, 张玉平, 等. 黑硅光电探测材料与器件研究进展[J]. 红外技术, 2022, 44(5): 437-452. http://hwjs.nvir.cn/article/id/1b6534f3-1774-4e03-8a32-2797ce325b06
WANG Bo, TANG Libin, ZHANG Yuping, et al. Research progress of black silicon photoelectric detection materials and devices[J]. Infrared Technology, 2022, 44(5): 437-452. http://hwjs.nvir.cn/article/id/1b6534f3-1774-4e03-8a32-2797ce325b06
|
[7] |
莫尊理, 朱小波, 赵国平, 等. 石墨烯的光电性能及其应用[J]. 硅酸盐通报, 2013, 32(9) : 1775-1779.
MO Zunli, ZHU Xiaobo, ZHAO Guoping, et al. Photoelectric properties and applications of gaphene [J]. Bulletin of the Chinese Ceramic Society, 2013, 32(9): 1775-1779.
|
[8] |
唐利斌, 姬荣斌, 项金钟. 石墨烯基材料的能带调控技术研究进展[J]. 红外技术, 2015, 37(11): 897-905. http://hwjs.nvir.cn/article/id/hwjs201511001
TANG Libin, JI Rongbin, XIANG Jinzhong. Progress in the tuning techniques of energy band for graphene based materials[J]. Infrared Technology, 2015, 37(11): 897-905. http://hwjs.nvir.cn/article/id/hwjs201511001
|
[9] |
姜小强, 刘智波, 田建国, 等. 石墨烯光学性质及其应用研究进展[J]. 物理学进展, 2017, 37(1): 22-36.
JIANG Xiaoqiang, LIU Zhibo, TIAN Jianguo, et al. The optical properties of Graphene and its application [J]. Progress in Physics, 2017, 37(1): 22-36.
|
[10] |
郝秋来, 周立庆. 石墨烯合成及其光电特性[J]. 激光与红外, 2014(12): 1295-1299.
HAO Qiulai, ZHOU Liqing. Synthesis and optical-electrical characteristics of grapheme[J]. Laser & Infrared, 2014(12): 1295-1299.
|
[11] |
赵建红, 宋立媛, 姬荣斌, 等. 石墨烯在光电探测领域的研究进展[J]. 红外技术, 2014, 36(8): 609-616. http://hwjs.nvir.cn/article/id/hwjs201408002
ZHAO Jianhong, SONG Liyuan, JI Rongbin, et al. Research progress of graphene in the field of photoelectric detection[J]. Infrared Technology, 2014, 36(8): 609-616. http://hwjs.nvir.cn/article/id/hwjs201408002
|
[12] |
李绍娟, 甘胜, 沐浩然, 等. 石墨烯光电子器件的应用研究进展[J]. 新型炭材料, 2014, 29(5): 329-356.
LI Shaojuan, GAN Sheng, MU Haoran, et al. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5): 329-356.
|
[13] |
杨花, 曹阳, 贺军辉, 等. 石墨烯红外光电探测器研进展[J]. 激光与光电子学进展, 2015, 52(11): 23-35.
YANG Hua, CAO Yang, HE Junhui, et al. Research progress in graphene-based infrared photodetectors[J]. Laser & Optoelectronics Progress, 2015, 52(11): 23-35.
|
[14] |
Konstantatos G, Badioli M, Gaudreau L, et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. DOI: 10.1038/nnano.2012.60
|
[15] |
Hummers William S, Offeman Richard E. Preparation of graphite oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
|
[16] |
李含健, 刘洁, 任慧, 等. 微纳结构铝热剂薄膜的旋涂制备及其燃烧性能[J]. 兵工学报, 2017, 38(2): 267-272.
LI Hanjian, LIU Jie, REN Hui, et al. Spin-coating preparation of micro-and nano-thermite films and their combustion performances[J]. Acta Armamentarii, 2017, 38(2): 267-272.
|
[17] |
郭晖. 积分光荧光测试在三代微光像增强器光阴极制作中的应用[J]. 应用光学, 2000, 21(6): 10-12.
GUO Hui. The applcation of integrating fluorescence test manufacturing of photocathode In Gen. 3 low-light-level image intensifier[J]. Journal of Applied Optics, 2000, 21(6): 10-12.
|