DAI Jinlun, ZHAO Lei, ZHANG Hongkun, LI Xiaobin, WANG Can, FU Chaobo, CAI Shunwen, YANG Sheteng, WANG Chunxing, HAN Qiang. Quantitative Method of the Tightening Torque About Circuit Board Screws in Thermal Imager[J]. Infrared Technology , 2024, 46(12): 1440-1447.
Citation: DAI Jinlun, ZHAO Lei, ZHANG Hongkun, LI Xiaobin, WANG Can, FU Chaobo, CAI Shunwen, YANG Sheteng, WANG Chunxing, HAN Qiang. Quantitative Method of the Tightening Torque About Circuit Board Screws in Thermal Imager[J]. Infrared Technology , 2024, 46(12): 1440-1447.

Quantitative Method of the Tightening Torque About Circuit Board Screws in Thermal Imager

More Information
  • Received Date: August 16, 2022
  • Revised Date: December 22, 2022
  • Fastening of PCB circuit board screws is a key process in infrared thermal imager installation and adjustment. Its assembly quality directly affects the performance of the circuit board and image quality in an infrared thermal imager. First, a quantitative method for tightening the torque of the circuit board screws in an infrared thermal imager was proposed. The theoretical tightening torque of the circuit board screws was then calculated using the proposed method. Finally, combined with the tightening torque value obtained using the proposed quantitative method, ANSYS Workbench was used for the finite element simulation analysis. The results verify the safety of the circuit board under a load of the theoretical screw torque value. This study investigates a quantitative method of an infrared thermal imager circuit board, enabling the quantification of the screw tightening torque value during the assembly process of an infrared thermal imager PCB circuit board. This improved the assembly quality of each circuit component of the infrared thermal imager and the stability of the entire machine.

  • [1]
    胡超, 刘芳, 周嘉诚, 等. 基于模态分析的印制电路板力学性能研究[J]. 电子元件与材料, 2021, 40(6): 597-602.

    HU Chao, LIU Fang, ZHOU Jiacheng, et al. Research on mechanical properties of printed circuit boards based on modal analysis[J]. Electronic Components & Materials, 2021, 40(6): 597-602.
    [2]
    李本, 任国全, 李冬伟, 等. 某火控计算机印制板动力学特性仿真试验分析[J]. 火力与指挥控制, 2014(5): 168-171.

    LI Ben, REN Guoquan, LI Dongwei, et al. Simulation test analysis of dynamic characteristics of a fire control computer printed board[J]. Fire Control & Command Control, 2014(5): 168-171.
    [3]
    王文博. 机载印制电路板振动特性与优化设计研究[D]. 南京: 南京航空航天大学, 2018.

    WANG Wenbo. Research on Vibration Characteristics and Optimization Design of Airborne Printed Circuit Boards[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [4]
    巫发茂, 蒋龙, 王健, 等. 基于ANSYS Workbench某机载电子设备随机振动响应分析[J]. 现代电子技术, 2016, 39(10): 96-93, 103.

    WU Famao, JIANG Long, WANG Jian, et al. Random vibration response analysis of an airborne electronic device based on ANSYS workbench[J]. Modern Electronics Technique, 2016, 39(10): 96-93, 103.
    [5]
    刘昌儒, 于鹏, 贺帅, 等. 印制电路板与元器件引脚振动分析[J]. 机电工程技术, 2020, 49(5): 32-34.

    LIU Changru, YU Peng, HE Shuai, et al. Pin vibration analysis of printed circuit boards and components[J]. Mechanical & Electrical Engineering Technology, 2020, 49(5): 32-34.
    [6]
    鲍丙豪, 赵洪利, 龚勇镇, 等. 基于ABAQUS的印制电路板组件模态研究[J]. 机械设计与制造, 2009(4): 122-124.

    BAO Binghao, ZHAO Hongli, GONG Yongzhen, et al. Modal study of printed circuit board components based on ABAQUS[J]. Mechanical Design and Manufacturing, 2009(4): 122-124.
    [7]
    王琳, 吴高峰. 一种提高电子设备振动环境适应性的优化设计[J]. 工业控制计算机, 2018, 31(1): 134-135, 143.

    WANG Lin, WU Gaofeng. An optimized design to improve the environmental adaptability of electronic equipment to vibration[J]. Industrial Control Computer, 2018, 31(1): 134-135, 143.
    [8]
    顾清华, 马志冬, 井石滚, 等. 基于3PGS和GPRS的露天矿出入车辆运输智能管控系统[J]. 计算机应用与软件, 2015, 32(6): 72-75.

    GU Qinghua, MA Zhidong, JING Shigun, et al. Intelligent management and control system for vehicle transportation in and out of open-pit mine based on 3PGS and GPRS[J]. Computer Applications and Software, 2015, 32(6): 72-75.
    [9]
    秦飞, 吴斌. 弹性与塑性理论基础[M]. 北京: 科学出版社, 2011.

    QIN Fei, WU Bin. Theoretical Foundations of Elasticity and Plasticity[M]. Beijing: Science Press, 2011.
    [10]
    国家技术监督局. 螺纹紧固件紧固通则: GB/T 16823.2-1997[S]. [1997-05-29].

    State Bureau of Technical Supervision General Rules of Tightening for Threaded Fasteners: GB/T 16823.2-1997[S]. [1997-05-29].
    [11]
    机械科学研究院. 小垫圈A级: GB/T 848-2002[S]. [2003-06-01].

    China Academy of Machinery Science and Technology. Small series--Product Grade A: GB/T 848-2002[S]. [2003-06-01].
    [12]
    机械委标准所. 鞍型弹性垫圈: GB/T 860-1987[S]. [1987-02-05].

    Standard Institute of the Ministry of Machinery. Curved Spring Washers: GB/T 860-1987[S]. [1987-02-05].
  • Related Articles

    [1]DAI Zikuo, SHI Kejian, SONG Shida, LIU Yang, XU Yan. Reliability Image Recognition Method for High Temperature Operation of Power Stabilizer in Medium and Low Voltage Grids Based on Infrared Imaging[J]. Infrared Technology , 2023, 45(12): 1351-1357.
    [2]YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
    [3]CAO Yutong, HUAN Kewei, XUE Chao, HAN Fengdi, LI Xiangyang, CHEN Xiao. Infrared and Visible Image Fusion Based on CNN with NSCT[J]. Infrared Technology , 2023, 45(4): 378-385.
    [4]XIONG Yu, SHAN Deming, YAO Yu, ZHANG Yu. Hyperspectral Image Hybrid Convolution Classification under Multi-Feature Fusion[J]. Infrared Technology , 2022, 44(1): 9-20.
    [5]DONG Anyong, DU Qingzhi, SU Bin, ZHAO Wenbo, YU Wen. Infrared and Visible Image Fusion Based on Convolutional Neural Network[J]. Infrared Technology , 2020, 42(7): 660-669.
    [6]LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80.
    [7]GAO Jun, JING Yiguo. A Fully Convoluted Neural Network-based Cloud Detection Method for Satellite Remote Sensing Images[J]. Infrared Technology , 2019, 41(7): 607-615.
    [8]Document Image Classification Based on Improved Local Binary Patterns[J]. Infrared Technology , 2014, (10): 827-831.
    [9]XU Xiang-jun, WANG Sheng-peng, JI Qing-chun, LIU Dong-fang, QIAN Wei-dong, YU Jie, YAN Ya-jing. Insulator Infrared Image Recognition Method Based on Gaussian Scale-space and GHT[J]. Infrared Technology , 2014, (7): 596-599.
    [10]The Study of Feature Extraction Used to Recognize Incomplete Image for Imaging Fuze[J]. Infrared Technology , 2001, 23(5): 20-23,28. DOI: 10.3969/j.issn.1001-8891.2001.05.007
  • Cited by

    Periodical cited type(3)

    1. 聂磊,武丽丽,黄一凡,刘梦然,刘江林. 基于红外图像分析的TSV内部缺陷识别方法研究. 仪表技术与传感器. 2023(01): 38-43 .
    2. 刘凯. 基于红外图像识别技术的道路与桥梁故障诊断. 计算技术与自动化. 2022(03): 105-110 .
    3. 沈九美,邱建林. 基于光散射的图形元素视觉整合系统. 激光杂志. 2022(10): 62-66 .

    Other cited types(5)

Catalog

    Article views (41) PDF downloads (21) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return