YANG Dan, JIN Ning, YANG Kaiyu, LI Jing, DONG Shulin, HU Jianchuan, LI Xiaojun. Optical Axis Static Sensitivity Analysis for Infrared Thermal Imaging Folding Optical System[J]. Infrared Technology , 2023, 45(8): 828-836.
Citation: YANG Dan, JIN Ning, YANG Kaiyu, LI Jing, DONG Shulin, HU Jianchuan, LI Xiaojun. Optical Axis Static Sensitivity Analysis for Infrared Thermal Imaging Folding Optical System[J]. Infrared Technology , 2023, 45(8): 828-836.

Optical Axis Static Sensitivity Analysis for Infrared Thermal Imaging Folding Optical System

More Information
  • Received Date: December 26, 2022
  • Revised Date: February 14, 2023
  • The optical axis of an infrared thermal imaging folding optical system is prone to shift owing to decentering of the tilt of optical components under complex environmental conditions, which affects the indication accuracy of the system for the target. Static sensitivity analysis of the optical axis for the optical system at the beginning of the design of the infrared thermal imaging system is useful for identifying the sensitive points of the optical system and provides constraints for the structural optimization design to meet the stability of the optical axis. The conversion relationship between the rotation process and spatial state quantities of the optical components was established by coordinate transformation based on the rotation matrix to simulate the spatial attitude of the optical component tilted in any direction and ensure that the Monte Carlo sampling in the optical axis sensitivity analysis corresponds to the constraint conditions of the structural design. On this basis, the flow of the static sensitivity analysis of the optical axis of the infrared folding optical system was established, and a program was compiled. A typical infrared thermal imaging folding optical system was analyzed using this program. According to the index requirements of the optical axis stability, the optical axis sensitivity and inverse sensitivity of the decenter and tilt of each optical component in the optical system were analyzed, and the initial tolerance limit was obtained. Then, Monte Carlo analysis sampling could be performed in any direction according to the initial tolerance limit data; thus, the decenter and tilt tolerance limit data that meet the optical axis stability index could be obtained, and the accuracy of the obtained data was verified by establishing a multi-coordinate system. Static sensitivity analysis provides a foundation for guiding the design of optical–mechanical thermal optimization.
  • [1]
    郭夏锐, 廖志波, 王春雨, 等. 光轴一致性误差对空间透射式系统像差和质量的影响[J]. 红外与激光工程, 2012, 41(2): 437-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201202031.htm

    GUO Xiarui, LIAO Zhibo, WANG Chunyu, et al. Aberration and alignment quality investigation of space transmission optical system with centering error of optical axes[J]. Infrared and Laser Engineering, 2012, 41(2): 437-441. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201202031.htm
    [2]
    马宏川, 范宏波, 林宇, 等. 热像仪光机热集成分析综述[J]. 红外技术, 2019, 41(2): 134-141. http://hwjs.nvir.cn/article/id/hwjs201902005

    MA Hongchuan, FAN Hongbo, LIN Yu, et al. Review of thermal-structural-optical integration analysis of thermal imager[J]. Infrared Technology, 2019, 41(2): 134-141. http://hwjs.nvir.cn/article/id/hwjs201902005
    [3]
    王阳, 黄煜, 李占峰, 等. 利用恒星对天文观测系统光轴平行性检校[J]. 红外与激光工程, 2017, 46(5): 0517003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201705018.htm

    WANG Yang, HUANG Yu, LI Zhanfeng, et al. Calibration of optical axis parallelism by using star for astronomical observation system[J]. Infrared and Laser Engineering, 2017, 46(5): 0517003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201705018.htm
    [4]
    陈志斌, 肖文健, 马东玺, 等. 大间距多光轴一致性野外在线检测方法[J]. 光学学报, 2017, 37(1): 0112006. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201701024.htm

    CHEN Zhibin, XIAO Wenjian, MA Dongxi, et al. A method for large distance multi-optical axis parallelism online detection[J]. Acta Optica Sinica, 2017, 37(1): 0112006. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201701024.htm
    [5]
    杨耀山, 赵泉, 王建龙, 等. 红外光学系统光轴稳定性建模与分析[J]. 电光与控制, 2017, 24(12): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201712018.htm

    YANG Yaoshan, ZHAO Quan, WANG Jianlong, et al. Optical axis stability modeling and analysis of infrared optical system[J]. Electronics Optics & Control, 2017, 24(12): 82-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201712018.htm
    [6]
    隋杰, 程会艳, 余成武, 等. 星敏感器光轴热稳定性仿真分析方法[J]. 空间控制技术与应用, 2017, 43(4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201704006.htm

    SUI Jie, CHENG Huiyan, YU Chengwu, et al. A thermal stability analysis and simulation method for boresight axis of star sensor[J]. Aerospace Control and Application, 2017, 43(4): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKZ201704006.htm
    [7]
    董雪岩, 许方宇, 陈骥, 等. 1 m红外太阳望远镜镜面位置误差致光轴偏移分析[J]. 红外技术, 2016, 38(10): 870-876. http://hwjs.nvir.cn/article/id/hwjs201610011

    DONG Xueyan, XU Fangyu, CHEN Ji, et al. Analysis on optic axis deviation induced by lens position disorder of 1 m new vacuum solar telescope[J]. Infrared Technology, 2016, 38(10): 870-876. http://hwjs.nvir.cn/article/id/hwjs201610011
    [8]
    Kalikivayi V, Kumar V C P, Kannan K, et al. Tolerance analysis of misalignment in an optical system using Shack–Hartmann wavefront sensor: experimental study[J]. Optical Engineering, 2015, 54(7): 075104.
    [9]
    高磊. 基于蒙特卡洛法的公差分析及优化设计方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2015.

    GAO Lei. Research on the Tolerance Analysis Based on Monte Carlo Method and Optimal Design Method[D]. Harbin: Harbin University of Science and Technology, 2015.
    [10]
    刘琳, 张兴德, 贺谊亮. 基于蒙特卡洛模拟法的红外光学系统公差分析[J]. 激光与红外, 2020, 40(5): 497-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201005012.htm

    LIU Lin, ZHANG Xingde, HE Yiliang. Monte Carlo simulation and its application in the IR optical system[J]. Laser & Infrared, 2020, 40(5): 497-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201005012.htm
    [11]
    袁贵星, 王平. 蒙特卡洛模拟及其在公差设计中的应用[J]. 天津科技大学学报, 2008, 23(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX200802019.htm

    YUAN Guixing, WANG Ping. Monte Carlo simulation and its application in tolerance design[J]. Journal of Tianjin University of Science & Technology, 2008, 23(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX200802019.htm
    [12]
    YANG K Y, JIN N, YANG D, et al. Monte Carlo calculation on stray radiation scattered by the baffle with a heterotypic surface for uncooled infrared system[C]// Proceedings of SPIE, 2018, 10815: 108150R.
    [13]
    苏朋. 365 nm光刻照明系统中变焦系统的设计及公差分析[J]. 红外与激光工程, 2022, 51(7): 20210524. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202207027.htm

    SU Peng. Design and tolerance analysis of the zoom system in 365 nm UV lithography illumination system[J]. Infrared and Laser Engineering, 2022, 51(7): 20210524. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202207027.htm
    [14]
    王川川, 岑兆丰, 李晓彤, 等. 基于线性模型的聚焦光学系统静态公差优化算法[J]. 光子学报, 2017, 46(11): 1122001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201711025.htm

    WANG Chuanchuan, CEN Zhaofeng, LI Xiaotong, et al. Optimization algorithm of static tolerance in focusing system based on linear model[J]. Acta Photonica Sinica, 2017, 46(11): 1122001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201711025.htm
    [15]
    蔡东浩, 李雅灿, 魏立冬, 等. 高光谱成像仪中曲面棱镜的装调公差研究[J]. 光学学报, 2021, 41(6): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202106007.htm

    CAI Donghao, LI Yacan, WEI Lidong, et al. Fabricating tolerance of curved prisms in hyperspectral spectrometer[J]. Acta Optica Sinica, 2021, 41(6): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202106007.htm
    [16]
    李美萱, 董连和. 浸没式光刻照明系统中会聚镜的设计及公差分析[J]. 应用光学, 2019, 40(5): 876-881. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201905027.htm

    LI Meixuan, DONG Lianhe. Design and tolerance analysis of converging lens in immersion Lithography illumination system[J]. Journal of Applied Optics, 2019, 40(5): 876-881. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201905027.htm
    [17]
    曹宇泽, 马文礼. 两步式灵敏度矩阵法在卡塞格林望远镜装调中的应用[J]. 光电工程, 2020, 47(2): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202002001.htm

    CAO Yuze, MA Wenli. Application of two step sensitivity matrix method in Cassegrain telescope alignment[J]. Opto-Electronic Engineering, 2020, 47(2): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202002001.htm
    [18]
    Synopsys Inc. Core Module User's Guide, Version 9.1[M]. Mountain View: Synopsys, 2020.
    [19]
    ZEMAX LLC. Zemax Optic Studio 21.3 User Manual, Version September 2021[M]// Kirkland: ZEMAX, 2021.
    [20]
    王增伟, 赵知诚, 杨溢, 等. 基于刚体运动完备方程的光机热集成分析方法[J]. 红外与激光工程, 2022, 51(6): 20210617. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202206021.htm

    WANG Zengwei, ZHAO Zhicheng, YANG Yi, et al. Thermal -structural-optical integrated analysis method based on the complete equations of rigid body motion[J]. Infrared and Laser Engineering, 2022, 51(6): 20210617. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202206021.htm
    [21]
    张坤, 钟兴, 孟遥, 等. 大视场纳型星敏光学系统公差灵敏度研究[J]. 光子学报, 2019, 48(5): 0522001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905010.htm

    ZHANG Kun, ZHONG Xing, MENG Yao, et al. Tolerance sensitivity research of nano-star sensor optical system with large field[J]. Acta Photonica Sinica, 2019, 48(5): 0522001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201905010.htm
  • Related Articles

    [1]JIN Yongwei, LIU Chunlong. Sensitivity Analysis of Thermal Design Parameters of High-Sensitivity Optical Detection Module[J]. Infrared Technology , 2025, 47(2): 141-147.
    [2]HE Qi, ZHAO Hangbin, PENG Jun, SUN Dexin. Application of Multiple Sampling Technology in LWIR Hyperspectral Imaging System[J]. Infrared Technology , 2019, 41(5): 457-461.
    [3]CHEN Jie, WU Xiaodi, YANG Xing, SHAO Hui. Calculation of Spatial Heat Flux Based on Improved Monte Carlo Algorithm[J]. Infrared Technology , 2017, 39(1): 91-94.
    [4]CHENG Wen, LIJun-shan, YU Ning, FENG Fan. Monte Carlo Simulation of Infrared Radiation Through Smoke Screen[J]. Infrared Technology , 2010, 32(11): 672-675,680. DOI: 10.3969/j.issn.1001-8891.2010.11.013
    [5]WANG Yi-feng, MAO Jing-xiang, FAN Nai-hua. Computation of Effectiveness of Baffled Cold Shield with Monte Carlo Method and MATLAB[J]. Infrared Technology , 2010, 32(9): 513-516. DOI: 10.3969/j.issn.1001-8891.2010.09.005
    [6]RONG Bai-lian, TANG Li-bin, YANG Yan, ZHU Ying-feng, LI Quan-bao. Discrimination of Unknown Lithium Element for Analysis Alloy Sample of Silver and Copper by GDMS[J]. Infrared Technology , 2010, 32(3): 169-172. DOI: 10.3969/j.issn.1001-8891.2010.03.012
    [7]CHEN Bo-yang, CHEN Fan-sheng, CHEN Gui-lin, SUN Sheng-li. A New Method of Improving Spatial Resolution of Linear Matrix Scanner by Over Sample[J]. Infrared Technology , 2009, 31(7): 395-398,402. DOI: 10.3969/j.issn.1001-8891.2009.07.006
    [8]XU Liang, LIU Jian-guo, GAO Min-guang, LU Yi-huai, LIU Wen-qing, WEI Xiu-li, ZHANG Tian-shu, LIU Zhi-ming. Compare the Results Measuring Methane in Atmosphere with Open Path FTIR And with Point Sampling Instrument[J]. Infrared Technology , 2007, 29(4): 239-242. DOI: 10.3969/j.issn.1001-8891.2007.04.013
    [9]Optimized Method of Selecting Samples for modeling in NIR Spectral Analysis[J]. Infrared Technology , 2005, 27(1): 75-78. DOI: 10.3969/j.issn.1001-8891.2005.01.018
    [10]Infrared FPA Spatial Sampling Characteristics Analysis and Measurement[J]. Infrared Technology , 2004, 26(2): 54-56,59. DOI: 10.3969/j.issn.1001-8891.2004.02.014
  • Cited by

    Periodical cited type(9)

    1. 卢泉,黄粒峰,胡梦竹. 基于改进直方图均衡的SF6泄漏区域增强算法. 红外技术. 2024(04): 437-442 . 本站查看
    2. 满林林,孙毅,李淑梅. 基于激光成像检测的GIS开关站SF_6气体泄露检测方法. 电器工业. 2024(11): 23-26+41 .
    3. 张泽林,吴玲玲,陈靖,王谦,张博渊. 红外成像的重气泄漏实时定位方法. 西安工业大学学报. 2024(06): 754-763 .
    4. 宋晓燕,李强,张峰,韩菲,王超冉. 电力基坑多气体浓度检测系统的研究与设计. 微型电脑应用. 2024(12): 183-186 .
    5. 袁建华,陈广生,张天宇,黄淘,陈轩. 基于红外与可见光图像融合的GIS设备气体泄漏识别研究. 国外电子测量技术. 2024(12): 231-239 .
    6. 曹江涛,李泉成,班铭,刘继臻,姬晓飞. 基于红外光谱成像的危险气体泄漏检测技术综述. 科学技术与工程. 2023(19): 8050-8060 .
    7. 刘赫,赵天成,李嘉帅,杨代勇,袁小翠,许志浩. 基于三直方图均衡的SF_6红外图像对比度增强方法. 红外技术. 2023(10): 1118-1125 . 本站查看
    8. 张红星,眭霄翔,王海军,刘中华,陈怀东,张海峰. 凝汽器管道壁面泄漏流场数值模拟研究. 真空. 2023(06): 15-21 .
    9. 李强,张峰,宋晓燕,韩菲,梁纲. 基于数值分析的电力基坑气体分布检测分析. 微型电脑应用. 2023(11): 91-94 .

    Other cited types(5)

Catalog

    Article views (183) PDF downloads (44) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return