ZHANG Qi, LU Qinghua, GUO Qian, ZHANG Chunpeng, PI Dongming, XIANG Liujing, WEN Hongqing, HE Xinyu. Research on Optical Axis Parallelism Adjustment Technology for Multi band Image Fusion System[J]. Infrared Technology , 2023, 45(12): 1294-1298.
Citation: ZHANG Qi, LU Qinghua, GUO Qian, ZHANG Chunpeng, PI Dongming, XIANG Liujing, WEN Hongqing, HE Xinyu. Research on Optical Axis Parallelism Adjustment Technology for Multi band Image Fusion System[J]. Infrared Technology , 2023, 45(12): 1294-1298.

Research on Optical Axis Parallelism Adjustment Technology for Multi band Image Fusion System

More Information
  • Received Date: July 25, 2023
  • Revised Date: August 07, 2023
  • This article is based on a multiband image fusion system and studies the alignment technology of the parallelism of the optical axis of the system. The five-axis parallel system includes a white light module, low light level module, short wave infrared module, long wave infrared module, and laser ranging module. The lowest light level module with the highest accuracy was 32.09. A parallelism deviation of less than 32.09 does not impact the system's usability. During installation and adjustment, the optical axis was aligned with the center of the collimator cross-target plate. This alignment produced an image size that is 99.89% of the maximum possible, which does not hinder the acquisition of image information. Finally, the system is verified experimentally using the developed platform. Experiments proved that the maximum deviation of the parallelism was nine, which is less than the maximum allowable error of the system. Therefore, this assembly and adjustment method had a certain reference value for the assembly and adjustment of similar products.
  • [1]
    谢国兵, 李超良, 蔡锦浩, 等. 激光测距机光轴平行性测试方法[J]. 电子测试, 2020(19): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202019017.htm

    XIE Guobing, LI Chaoliang, CAI Jinhao, et al. Test method for optical axis parallelism of laser rangefinder[J]. Electronic Testing, 2020(19): 48-51 https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202019017.htm
    [2]
    贾文武, 刘培正, 唐自力, 等. 靶场适用的光电经纬仪光轴平行性检测[J]. 光学精密工程, 2020, 28(8): 1670-1677. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008006.htm

    JIA Wenwu, LIU Peizheng, TANG Zili, et al. Detection of optical axis parallelism using photoelectric theodolites suitable for shooting ranges[J]. Optical Precision Engineering, 2020, 28(8): 1670-1677 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008006.htm
    [3]
    杨雪, 陈文红, 张玺, 等. 宽光谱光电系统多光轴平行性工程化测试方法研究[J]. 激光与红外, 2019, 49(8): 978-982. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908013.htm

    YANG Xue, CHEN Wenhong, ZHANG Xi, et al. Research on engineering testing method for multi axis parallelism of wide spectral optoelectronic systems [J]. Laser and Infrared, 2019, 49(8): 978-982 https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201908013.htm
    [4]
    王瑶, 李岩, 付跃刚. 便携式可见光多光轴平行性校正系统[J]. 长春理工大学学报(自然科学版), 2019, 42(2): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201902015.htm

    WANG Yao, LI Yan, FU Yuegang. Portable visible light multi axis parallelism correction system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(2): 65-68 https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201902015.htm
    [5]
    赵玮, 昌明, 刘虎, 等. 空间旋转多光轴平行性校准技术[J]. 应用光学, 2018, 39(5): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201805007.htm

    ZHAO Wei, CHANG Ming, LIU Hu, et al. Multi axis parallelism calibration technique for spatial rotation[J]. Applied Optics, 2018, 39(5): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201805007.htm
    [6]
    徐丹慧, 唐霞辉, 方国明, 等. 基于干涉条纹的光轴平行性校准方法[J]. 光学学报, 2020, 40(17): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202017016.htm

    XU Danhui, TANG Xiahui, FANG Guoming, et al. A calibration method for optical axis parallelism based on interference fringes[J]. Journal of Optics, 2020, 40(17): 129-136 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202017016.htm
    [7]
    ZOU Huihui, WU Hongbing, ZHOU Lujun. A testing method of optical axes parallelism of shipboard photoelectrical theodolite[J]. China Satellite Maritime Tracking and Control (China), 2016, 9684: 96841V-96841V-5.
    [8]
    谢国兵, 薛永刚, 晁格平, 等. 基于LABVIEW的多光轴平行性测试方法[J]. 应用光学, 2018, 39(6): 856-861. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201806018.htm

    XIE Guobing, XUE Yonggang, CHAO Geping, et al. Multi axis parallelism testing method based on LABVIEW[J]. Applied Optics, 2018, 39(6): 856-861. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201806018.htm
    [9]
    应家驹, 陈玉丹, 武东生, 等. 双目光轴平行性检校仪检测精度分析[J]. 激光与红外, 2018, 48(6): 750-755. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201806016.htm

    YING Jiaju, CHEN Yudan, WU Dongsheng, et al. Analysis of testing accuracy of binocular optical axis parallelism calibration instrument[J]. Laser and Infrared, 2018, 48(6): 750-755. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201806016.htm
    [10]
    崔启胤. 大间距光轴平行性检测方法研究[D]. 长春: 长春理工大学, 2018.

    CUI Qiyin. Research on the Detection Method of Large Distance Optical Axis Parallelism[D]. Changchun: Changchun University of Technology, 2018.
    [11]
    王志强. 350 mm口径离轴反射式平行光管的设计[D]. 长春: 长春理工大学, 2020.

    WANG Zhiqiang. Design of 350 mm Off-axis Reflective Collimator[D]. Changchun: Changchun University of Technology, 2020.
    [12]
    YING Jiaju, CHEN Yudan, LIU Jie, et al. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system[C]//Proc. Of on SPIE on Optical Measurement Technology and Instrumentation, 2016: 10155: 101550X.
    [13]
    黄富瑜, 李刚, 史云胜, 等. 多光谱多光轴平行性检测方案设计与误差分析[J]. 光电工程, 2019, 46(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201902002.htm

    HUANG Fuyu, LI Gang, SHI Yunsheng, et al. Design and error analysis of multi spectral and multi axis parallelism detection scheme[J]. Optoelectronic Engineering, 2019, 46(2): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201902002.htm
  • Related Articles

    [1]TAN Hesheng, CHEN Mingxin, ZHAO Heng, WANG Lingyan, YANG Wenbo, DENG Huabing, JIN Yingkun, FENG Yunxiang, DAO Lichun, ZHANG Kunlin. Bonding of Ceramic Substrate and CMOS Chip of EBAPS Devices[J]. Infrared Technology , 2025, 47(5): 571-577.
    [2]GU Ziyue, NA Qiyue, XU Jiandong, SHEN Ji, CHANG Weijing. Development of a Novel Polarization Low-light EMCCD Sensor[J]. Infrared Technology , 2024, 46(10): 1138-1144.
    [3]LUO Zhenhua, CHENG Shuai, QIAN Yunsheng, ZHANG Yijun. Flicker Noise Testing System of Electron Bombarded Active Pixel Sensor[J]. Infrared Technology , 2024, 46(10): 1130-1137.
    [4]WANG Silong, SUN Aiping, LI Xunniu, YU Jiatong, ZHOU Lingling, CHEN Yurou, PI Dongming. Research Progress of an Electron Bombarded Active Pixel Sensor[J]. Infrared Technology , 2024, 46(10): 1120-1129.
    [5]ZHU Qin, FAN Mingguo, SONG Xinbo, QI Haoze, FANG Liyuan, GUAN Tao, GONG Xiaoxia. High-Performance 512×2-Element Linear InGaAs Short-Wavelength Infrared Focal Plane Detector[J]. Infrared Technology , 2024, 46(7): 826-830.
    [6]SHAO Xiumei, GONG Haimei, LI Xue, FANG Jiaxiong, TANG Hengjing, LI Tao, HUANG Songlei, HUANG Zhangchen. Developments of High Performance Short-wave Infrared InGaAs Focal Plane Detectors[J]. Infrared Technology , 2016, 38(8): 629-635.
    [7]LIU Feng, SHI Feng, JIAO Gang-cheng, SHI Hong-li, MIAO Zhuang, REN Bin. Design and Simulation of p-InGaAs/p-InP Heterojunction within Short-wave Infrared Threshold Field-assisted Photocathode[J]. Infrared Technology , 2015, (9): 778-782.
    [8]SHI Yan-li, HU Rui, ZHANG Wei-feng, FENG Yun-xiang, DENG Gong-rong, CHU Zhu-jun, LI Yan-hong, GUO Qian, LU Qiang. Progress of InGaAs Solid-State Low-Light Devices[J]. Infrared Technology , 2014, (2): 81-88.
    [9]ZHANG Wei-feng, ZHANG Ruo-lan, ZHAO Lu-sheng, HU Rui, SHI Yan-li. Development Progress of InGaAs Short-wave Infrared Focal Plane Arrays[J]. Infrared Technology , 2012, 34(6): 361-365. DOI: 10.3969/j.issn.1001-8891.2012.06.011
    [10]SHAO Xiu-mei, LI Tao, DENG Hong-hai, CHENG Ji-feng, CHEN Yu, TANG Heng-jing, LI Xue. Planar-type 24 × 1 InGaAs Short Wave Infrared Detectors[J]. Infrared Technology , 2011, 33(9): 501-504. DOI: 10.3969/j.issn.1001-8891.2011.09.002
  • Cited by

    Periodical cited type(8)

    1. 郭广浩,吴南健,刘力源. 低功耗非制冷红外图像处理专用SoC芯片. 红外与毫米波学报. 2023(01): 122-131 .
    2. 郭玉婷,贾晓洪,李丽娟,刘俊明. 时空域自适应滤波非均匀性校正算法. 红外技术. 2023(05): 482-487 . 本站查看
    3. 黎明清 ,王宇庆 ,孙海江 . 基于侧窗滤波改进的神经网络非均匀性校正算法. 液晶与显示. 2023(11): 1567-1579 .
    4. 汪晓,葛军. 基于局部梯度的神经网络非均匀性校正算法. 红外. 2018(03): 18-22+43 .
    5. 潘科辰,顾国华,陈钱,隋修宝. 一种改进的全变分模型校正红外焦平面阵列条纹非均匀性. 红外技术. 2016(02): 138-143 . 本站查看
    6. 李召龙,沈同圣,史浩然,娄树理. 红外成像系统非均匀性快速校正方法. 舰船科学技术. 2016(21): 148-150 .
    7. 牛英宇,聂瑞杰,李丽娟. 基于FPGA的红外图像非均匀校正实现方法. 激光与红外. 2016(08): 1028-1032 .
    8. 陈芳林,张宝辉,汪贵华,杨开峰,于世孔. 改进的神经网络非均匀性校正算法研究. 科学技术与工程. 2016(33): 215-220 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return