Citation: | XI Xiaowen, SU Qingfeng, YUAN Yanni, JIANG Haijun, CHEN Li, WEI Yibing. Comparative Study of Using Ultrasonic Infrared Thermography for Detecting Aeroengine Blade Cracks[J]. Infrared Technology , 2021, 43(2): 186-191. |
[1] |
于霞, 张卫民, 邱忠超, 等. 航空发动机涡轮叶片裂纹检测信号特征提取[J]. 兵工学报, 2014, 35(8): 1267-1274. DOI: 10.3969/j.issn.1000-1093.2014.08.020
YU Xia, ZHANG Weimin, QIU Zhongchao, et al. Signal feature extraction of aero-engine turbine blade crack detection[J]. Acta Armam, 2014, 35 (8): 1267-1274. DOI: 10.3969/j.issn.1000-1093.2014.08.020
|
[2] |
宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35 (8): 2355-2363. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201408030.htm
SONG Kai, LIU Tangxian, LI Laiping, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Chinese Journal of Aeronautics, 2014, 35 (8): 2355-2363. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201408030.htm
|
[3] |
万利, 李舜酩, 金业壮. 某型发动机压气机第1级整流叶片疲劳试验研究[J]. 航空发动机, 2008, 34(3): 15-17. DOI: 10.3969/j.issn.1672-3147.2008.03.005
WAN Li, LI Shunming, JIN Yezhuang. Fatigue test of an aeroengine compressor IGVs[J]. Aeroengine, 2008, 34(3): 15-17. DOI: 10.3969/j.issn.1672-3147.2008.03.005
|
[4] |
许锷俊. 缺陷、损伤、微裂纹对航空发动机构件服役总寿命及可靠性的影响[J]. 航空发动机, 2003, 29(2): 11-15. DOI: 10.3969/j.issn.1672-3147.2003.02.004
XU Ejun. The effect of defects, damage and micro crack on total life and reliability of aeroengine components in service[J]. Aeroengine, 2003, 29(2): 11-15. DOI: 10.3969/j.issn.1672-3147.2003.02.004
|
[5] |
耿荣生, 郑勇. 航空无损检测技术发展动态及面临的挑战[J]. 无损检测, 2002, 24(1): 1-5. DOI: 10.3969/j.issn.1000-6656.2002.01.001
GENG Rongsheng, ZHENG Yong. Prospective vies on the application of nondestructive testing in air industry and possible challenges[J]. Nondestructive Testing, 2002, 24(1): 1-5. DOI: 10.3969/j.issn.1000-6656.2002.01.001
|
[6] |
孙护国, 霍武军. 航空发动机涡轮叶片的检测技术[J]. 航空发动机, 2002, 28(1): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200201006.htm
SUN Huguo, HUO Wujun. Inspection technique for turbine blade in aeroengine[J]. Aeroengine, 2002, 28 (1): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200201006.htm
|
[7] |
郭海鸥. 飞机某型发动机压缩机一级叶片裂纹检测研究[J]. 无损探伤, 2004, 28(5): 45-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS200405014.htm
GUO Hai'ou. Research on crack detection of the first stage blade of an aircraft engine compressor[J]. Nondestructive Testing, 2004, 28(5): 45-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS200405014.htm
|
[8] |
曹益平, 李路明, 黄刚, 等. 基于电磁检测原理的疲劳裂纹检测方法[J]. 清华大学学报, 2005, 45(11): 53-459. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200511003.htm
CAO Yiping, LI Luming, HUANG Gang, et al. Fatigue crack detection based on electromagnetic testing[J]. Journal of Tsinghua Univesity : Science and Technology, 2005, 45(11): 53-459. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200511003.htm
|
[9] |
程云勇, 张定华, 毛海鹏, 等. 一种基于工业CT的航空发动机涡轮叶片生产检测系统关键技术研究[J]. 制造技术与机床, 2004, 6(1): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC200401008.htm
CHENG Yunyong, ZHANG Dinghua, MAO Haipeng, et al. Research on key techniques of inspection system for aero-engine turbine blade based on industrial CT[J]. Manufacturing Technology & Machine Tool, 2004, 6(1): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC200401008.htm
|
[10] |
ZHOU Jianwei, Martin C Lugg, Roy Collins. A non-uniform model for alternating current filed measurement of fatigue cracks in metal[J]. Int. J. of Applied Electromagnetics and Mechanics, 1999, 10: 221-235. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=2081322&site=ehost-live
|
[11] |
Favro L D, Han X, Ouyang Z, et al. Infrared imaging of defects heated by sonic pulse[J]. Rev. Sci. Instrum, 2000, 71(6): 2418-2421. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4997844
|
[12] |
敬甫盛, 李朋, 江海军, 等. 基于超声热波成像技术的机车钩舌的裂纹检测[J]. 红外技术, 2020, 42(2): 158-162. http://hwjs.nvir.cn/article/id/hwjs202002009
JING Fusheng, LI Peng, JIANG Haijun, et al. Crack detection of locomotive hook tongue based on ultrasonic thermography[J]. Infrared Technology, 2020, 42(2): 158-162. http://hwjs.nvir.cn/article/id/hwjs202002009
|
[13] |
徐长航, 谢静, 周乃望, 等. 新型超声红外热像无损检测实验系统研制[J]. 实验技术与管理, 2016, 33(10): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201610019.htm
XU Changhang, XIE Jing, ZHOU Naiwang, et al. Development of a novel experimental system for structural non-destructive testing based on ultrasonic thermography[J]. Experimental Technology and Management, 2016, 33(10): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201610019.htm
|
[14] |
冯辅周, 张超省, 江鹏程, 等. 基于超声红外热像技术的装甲装备缺陷检测系统的设计与实现[J]. 光电子技术, 2012, 32(3): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS201203007.htm
FENG Fuzhou, ZHANG Chaosheng, JIANG Pengcheng, et al. Design and implement of defect detection system for armored equipments based on ultrasonic infrared thermography[J]. Optoelectronic Technology, 2012, 32(3): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS201203007.htm
|
[15] |
金国锋, 张炜, 宋远佳, 等. 含曲率结构裂纹的超声红外热波检测数值仿真[J]. 科学技术与工程, 2013, 13(3): 776-779. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201303048.htm
JIN Guofeng, ZHANF Wei, SONG Yuanjia, et al. Numerical simulation for ultrasonic infrared thermal wave detecting of curvature structural crack[J]. Science Technology and Engineering, 2013, 13(3): 776-779. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201303048.htm
|
[16] |
CHEN Zhaojiang, ZHENG Jiang, ZHANG Shuyi, et al. Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses[J]. Chinese Physics B, 2010, 19(11): 682-694. http://www.cqvip.com/Main/Detail.aspx?id=35788647
|
[1] | LI Xindong, WANG Juan, FENG Zongxin, SHI Hanbing, WANG Kun. Adaptive Gain Photoelectric Detection Circuit Design[J]. Infrared Technology , 2024, 46(1): 12-19. |
[2] | FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194. |
[3] | LI Xiaofeng, HE Yanbin, CHANG Le, WANG Guangfan, XU Chuanping. Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers[J]. Infrared Technology , 2022, 44(8): 764-777. |
[4] | JING Song, YANG Bo, HUANG Zhangcheng, GONG Haimei, GAO Haijun. Study on High-gain and Low Noise Infrared Focal Plane Readout Circuit[J]. Infrared Technology , 2019, 41(12): 1117-1123. |
[5] | BAI Xiaofeng, GUO Hui, YANG Shuning, SHI Feng, HU Zhong, HOU Zhipeng, CHEN Xulang, HUANG Wujun. Luminance Gain Measurement and Life Prediction of Low-light-level Image Intensifier[J]. Infrared Technology , 2019, 41(3): 203-207. |
[6] | HAO Ziheng, LI Xiangxin, ZHANG Ni, ZHU Yufeng, LI Dan. Preparation of High Gain Secondary Electron Emission Layer for Micro-channel Plate[J]. Infrared Technology , 2018, 40(11): 1077-1080. |
[7] | LIU Shu-lin, DENG Guang-xu, YAN Cheng, SUN Jian-ning, ZHANG Yan-yun, YANG Bao-rong, ZHU Qin. Experiment Research on Relation Between MCP Gain and Electron Energy While First Collision[J]. Infrared Technology , 2011, 33(6): 354-356. DOI: 10.3969/j.issn.1001-8891.2011.06.010 |
[8] | WANG Fang, SONG Yan, LI Lei, YUE Chun-guang, MA Chun-wang, LIU Yu-fang. Design of High Gain and Low Noise Pyroelectric Infrared Detector Preamplifier[J]. Infrared Technology , 2010, 32(11): 663-665. DOI: 10.3969/j.issn.1001-8891.2010.11.011 |
[9] | The Affect of Luminance Gain to Visual Range of LLL Night Vision Apparatus[J]. Infrared Technology , 2004, 26(6): 27-30. DOI: 10.3969/j.issn.1001-8891.2004.06.007 |
[10] | Effects of Metallic Film UV Transmittance on Electron Gain of MCP[J]. Infrared Technology , 2002, 24(3): 31-33,37. DOI: 10.3969/j.issn.1001-8891.2002.03.008 |