LI Mu, WU Tong, TIAN Zhejia. Non-contact Vital Signs Measurement by Thermal Imaging Technology[J]. Infrared Technology , 2022, 44(4): 428-436.
Citation: LI Mu, WU Tong, TIAN Zhejia. Non-contact Vital Signs Measurement by Thermal Imaging Technology[J]. Infrared Technology , 2022, 44(4): 428-436.

Non-contact Vital Signs Measurement by Thermal Imaging Technology

More Information
  • Received Date: April 13, 2021
  • Revised Date: June 23, 2021
  • To solve the problems of inconvenient carrying and contact with the human body when using current clinical vital signs monitoring equipment, a method of estimating heart rate and respiratory information is proposed by analyzing the facial vascular model and temperature difference of the nostril position using an infrared thermal imager as a transmission device. First, the foreground target is extracted from the obtained thermal image sequence to shorten the time of face detection in the entire image. Anisotropic diffusion is then used to enhance the contrast of the vascular position in the region of interest, and the gray mean of the vascular position in the face is obtained by morphological processing to form the initial heart rate signal. Finally, trend elimination, wavelet threshold denoising, and other filtering methods were used to remove the trend item and random noise in the time series to obtain the final heart rate waveform, dynamic heart, and respiration values. Compared with specialized equipment in the hospital, it was found that the method exhibited a heart rate error of less than 4%, and the average error of the average value was 0.718 beats/min. The breathing error is within 1 beat/min, showing high accuracy and robustness and that the method can meet actual needs.
  • [1]
    Chekmenev S Y, Farag A A, Essock E A. Multiresolution Approach for Non-Contact Measurements of Arterial Pulse using Thermal Imaging[C]//2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), 2006: 129-129, doi: 10.1109/CVPRW.2006.139
    [2]
    Garbey M, Sun N, Merla A, et al. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery[J]. IEEE Trans. Biomed. Eng. , 2007, 54(8): 1418-1426. DOI: 10.1109/TBME.2007.891930
    [3]
    Gault T R, Farag A A. A fully automatic method to extract the heart rate from thermal video[C]// 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013: 336-341.
    [4]
    梁智敏, 陈骐, 肖书明, 等. 利用热成像技术对心率进行无接触检测的研究[J]. 中国体育科技, 2018, 54(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY201801019.htm

    LIANG Zhimin, CHEN Qi, XIAO Mingshu. Research on non-contact heart rate detection using thermal imaging[J]. China Sport Science and Technology, 2018, 54(1): 136-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTY201801019.htm
    [5]
    景斌, 李海云. 基于红外序列图像的心率无损检测方法研究[J]. 中国生物医学工程学报, 2010, 29(6): 943-946. DOI: 10.3969/j.issn.0258-8021.2010.06.024

    JING Bin, LI Haiyun. Study on nondestructive detection method of heart rate based on infrared sequence image[J]. Chinese Journal of Biomedical Engineering, 2010, 29(6): 943-946. DOI: 10.3969/j.issn.0258-8021.2010.06.024
    [6]
    王建明, 王彦召. 基于红外热像图估计心率和心率波形的新方法[J]. 北京师范大学学报: 自然科学版, 2019(3): 324-328. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201903005.htm

    WANG Jianming, WANG Yanzhao. A new method for estimating heart rate and heart rate waveform based on infrared thermography[J]. Journal of Beijing Normal University: Natural Science, 2019(3): 324-328. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201903005.htm
    [7]
    张栋, 高惠合, 温宝珠, 等. 人体正常红外面部图像和温度分布[J]. 自然杂志, 1992, 15(5): 398-399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199205027.htm

    ZHANG Dong, GAO Huihe, WEN Baozhu. Normal infrared facial image and temperature distribution of human body[J]. Nature, 1992, 15(5): 398-399. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ199205027.htm
    [8]
    TANG Q, DAI S G, YANG J. Object tracking algorithm based on Camshift combining background subtraction with three frame difference[J]. Applied Mechanics & Materials, 2013, 373-375: 1116-1119.
    [9]
    Akula A, Khanna N, Ghosh R, et al. Adaptive contour-based statistical background subtraction method for moving target detection in infrared video sequences[J]. Infrared Physics & Technology, 2014, 63: 103-109.
    [10]
    SUN D, Roth S, Black M J. a quantitative analysis of current practices in optical flow estimation and the principles behind them[J]. International Journal of Computer Vision, 2014, 106(2): 115-137. DOI: 10.1007/s11263-013-0644-x
    [11]
    谢刚. 红外图像人脸识别方法研究进展[J]. 计算机工程与设计, 2008, 29(18): 4801. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ200818051.htm

    XIE Gang. Research progress of infrared image face recognition method[J]. Computer Engineering and Design, 2008, 29(18): 4801. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ200818051.htm
    [12]
    曾华. 红外人脸图像识别研究[D]. 武汉: 武汉工程大学, 2011.

    ZENG Hua. Research on Infrared Face Image Recognition[D]. Wuhan: Wuhan Institute of Technology, 2011.
    [13]
    刘鸿宇. HP滤波方法原理及其应用情况浅析[J]. 课程教育研究, 2018(34): 150-151. https://www.cnki.com.cn/Article/CJFDTOTAL-KCJY201834152.htm

    LIU Hongyu. HP filter principle and its application[J]. Research on Curriculum Education, 2018(34): 150-151. https://www.cnki.com.cn/Article/CJFDTOTAL-KCJY201834152.htm
    [14]
    陈海龙, 王钧婷, 张岩. 时间序列平稳性检验方法分析及应用研究[EB/OL]. 中国科技论文在线[2015-09-02] [2015-09-29]. http://www.paper.edu.cn/releasepaper/content.

    CHEN Hailong, WANG Junting, ZHANG Yan. Analysis and application of time series stationarity test method[EB/OL]. science & technology magazine online. [2015-09-02] [2015-09-29]. http://www.paper.edu.cn/releasepaper/content.
    [15]
    王瑞. 小波变换在红外图像处理中的应用研究[D]. 淮南: 安徽理工大学, 2016.

    WANG Rui. Application of Wavelet Transform in Infrared Image Processing[D]. Huainan: AnHui University of Science and Technology, 2016.
    [16]
    李庆华, 山拜·达拉拜, 孙全富. 基于自适应小波阈值的心电信号去噪算法[J]. 计算机仿真, 2013, 30(10): 368-371. DOI: 10.3969/j.issn.1006-9348.2013.10.084

    LI Qinghua, Senbai Dalabaev, SUN Quanfu. A denoising algorithm of ECG signal based on adaptive wavelet threshold[J]. Computer Simulation, 2013, 30(10): 368-371. DOI: 10.3969/j.issn.1006-9348.2013.10.084
    [17]
    QI C, WANG Z, HAN J, et al. Wavelet threshold denoising of thermal image from transmission joints[C]//2011 International Conference of Information Technology, Computer Engineering and Management Sciences, 2011: 108-111.
    [18]
    王盛波. 基于视频实时持续心率检测及可视化[D]. 杭州: 杭州师范大学, 2015.

    WANG Shengbo. Continuous Heart Rate Detection Visualization Based on Video[D]. Hangzhou: Hangzhou Normal University, 2015.
    [19]
    石超, 王永锋, 王正军. 复杂背景下前景目标提取算法研究[J]. 中国水运, 2019, 19(6): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201906032.htm

    SHI Chao, WANG Yongfeng, WANG Zhengjun. Research on foreground target extraction algorithm under complex background[J]. China Water Transport, 2019, 19(6): 58-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201906032.htm
  • Cited by

    Periodical cited type(3)

    1. 代志豪,姜杰,赵雪成,杨增汪. 基于FMCW雷达和ESP-EMSH网络的非接触健康监测系统. 现代电子技术. 2024(16): 39-46 .
    2. 冯玉涵,孙剑,张莉. 基于人工智能的红外热成像面部表情识别. 激光杂志. 2024(12): 245-249 .
    3. 黄政钦,刘铭华,陈文骏. 非接触式生理参数检测系统的设计与实现. 科技创新与应用. 2023(34): 48-52 .

    Other cited types(6)

Catalog

    Article views (250) PDF downloads (48) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return