Citation: | LI Qingzhong. Infrared Object Tracking Algorithm Based on Two-stage Spatiotemporal Weighted Features[J]. Infrared Technology , 2025, 47(4): 437-444. |
This paper proposes an infrared object tracking algorithm based on two-stage spatiotemporally weighted features. First, the object area is divided into non-overlapping areas of the same size, and different weights are assigned to different location information, from which an adaptive spatiotemporal weighted Bayesian classifier is derived. An improved metric is then used to identify classification samples with the maximum class difference, which have high tracking adaptability, and to enable re-capture and tracking when the target is occluded. Simulation experiments show that, compared with mainstream tracking algorithms such as SiamFC, the proposed algorithm achieves significant improvements in overlap rate and central error indicators on the LSOTB-TIR target tracking dataset, significantly enhancing tracking stability and positioning accuracy. The tracking speed reaches 56 F/s, making it suitable for engineering applications.
[1] |
吴浩, 张勇, 李欣, 等. 光电跟踪系统高精度模板匹配跟踪算法[J]. 红外技术, 2022, 44(12): 1301-1308. http://hwjs.nvir.cn/article/id/85d663ef-c5b2-401e-a0b5-839a482cf436
WU Hao, ZHANG Yong, LI Xin, et al. High-precision template matching tracking algorithm for optoelectronic tracking system[J]. Infrared Technology, 2022, 44(12): 1301-1308. http://hwjs.nvir.cn/article/id/85d663ef-c5b2-401e-a0b5-839a482cf436
|
[2] |
杨擎宇, 王永让, 李昊, 等. 一种自适应红外目标尺寸变化的检测跟踪算法[J]. 红外技术, 2022, 44(11): 1176-1185. http://hwjs.nvir.cn/article/id/ed0ed0b4-acc4-4d0e-b32b-7cc68da617ed
YANG Qingyu, WANG Yongrang, LI Hao, et al. Adaptive detection and tracking algorithm for infrared target size variation[J]. Infrared Technology, 2022, 44(11): 1176-1185. http://hwjs.nvir.cn/article/id/ed0ed0b4-acc4-4d0e-b32b-7cc68da617ed
|
[3] |
唐中和, 霍建亮. 基于局部结构变换域稀疏外观模型的目标跟踪[J]. 电视技术, 2017, 41(7/8): 140-146.
TANG Zhonghe, HUO Jianliang. Object tracking based on sparse appearance model of local structure in DCT[J]. Video Engineering, 2017, 41(7/8): 140-146.
|
[4] |
YAN Y, GUO X, TANG J, et al. Learning spatio-temporal correlation filter for visual tracking[J]. Neurocomputing, 2021, 436: 273-282. DOI: 10.1016/j.neucom.2021.01.057
|
[5] |
WANG Y H, Hsieh J W, CHEN P Y, et al. Smiletrack: similarity learning for occlusion-aware multiple object tracking[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(6): 5740-5748.
|
[6] |
ZHANG K, ZHANG L, YANG M. Fast compressive tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. DOI: 10.1109/TPAMI.2014.2315808
|
[7] |
ZHANG J, WU Y, HAO F, et al. Double similarities weighted multi-instance learning kernel and its application[J]. Expert Systems with Applications, 2024, 238: 1219-1231.
|
[8] |
王升哲, 张枭, 郑杰, 等. 基于SOC架构的智能图像处理和外设控制系统设计[J]. 计算机测量与控制, 2021, 29(4): 90-94.
WANG Shengzhe, ZHANG Xiao, ZHENG Jie, et al. Design of intelligent image processing and peripheral control system based on SOC architecture[J]. Computer Measurement & Control, 2021, 29(4): 90-94.
|
[9] |
LIU Jiamin, XIE Wenjie, HUANG Hong, et al. Spatial and channel attention mechanism method for object tracking[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2569-2576.
|
[10] |
GAO S, ZHOU C, MA C, et al. Aiatrack: attention in attention for transformer visual tracking[C]//European Conference on Computer Vision, 2022: 146-164.
|
[11] |
WANG Q, ZHENG Y, PAN P, et al. Multiple object tracking with correlation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 3876-3886.
|
[12] |
ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. DOI: 10.1109/TPAMI.2014.2315808
|
[13] |
WANG Z, ZHENG L, LIU Y, et al. Towards real-time multi-object tracking[C]//European Conference on Computer Vision, 2020: 107-122.
|
[14] |
HUANG B, XU T, JIANG S, et al. Robust visual tracking via constrained multi-kernel correlation filters[J]. IEEE Transactions on Multimedia, 2020, 22(11): 2820-2832. DOI: 10.1109/TMM.2020.2965482
|
[15] |
Babenko B, YANG M H, Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 33-42.
|
[16] |
LIU Q, LI X, HE Z, et al. LSOTB-TIR: a large-scale high-diversity thermal infrared object tracking benchmark[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 3847-3856.
|
[17] |
LIANG Y, LIU Y, YAN Y, et al. Robust visual tracking via spatio-temporal adaptive and channel selective correlation filters[J]. Pattern Recognition, 2021, 112: 107738-107742. DOI: 10.1016/j.patcog.2020.107738
|
[18] |
Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]//Computer Vision–ECCV 2016 Workshops, 2016: 850-865.
|
[19] |
LI W, HOU Z, ZHOU J, et al. SiamBAG: band attention groundbased Siamese object tracking network for hyperspectral videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 25(8): 2011-2015.
|
[1] | JI Yiping, DENG Xianqin, XU Peng, GAO Kai. Analysis of SF6 Leakage Detection Using Infrared Imaging[J]. Infrared Technology , 2022, 44(2): 198-204. |
[2] | An Infrared Object Tracking Algorithm Based on Dual-mode Context Occlusion Detection Mechanism[J]. Infrared Technology , 2018, 40(9): 902-907. |
[3] | LYU Gaojie, MAO Xin, HU Yinji, JIA Congle. One Method to Detect Tracking Occlusions Based on Evaluation Forward and Backward Errors[J]. Infrared Technology , 2016, 38(4): 337-341,347. |
[4] | ZHANG Li-juan, JI feng, CHANG Xia, LI Ze-ren. Multi-scale Compression Perception Tracking under Occlusion[J]. Infrared Technology , 2015, (12): 1052-1057. |
[5] | SHEN Di, LI Cheng-fan, ZHAO Jun-juan, YIN Jing-yuan. Volcanic Ash Cloud Detection Based on Variational Bayesian ICA[J]. Infrared Technology , 2014, (2): 120-124. |
[6] | JIN Guang-zhi, SHI Lin-suo, ZHENG Feng-shou, BAI Xiang-feng, LI Jian-yi. Moving Objects Detecting and Tracking for Fighting Shadow and Occlusion[J]. Infrared Technology , 2011, 33(8): 483-488. DOI: 10.3969/j.issn.1001-8891.2011.08.012 |
[7] | WANG Ying-ying, ZHANG Yong-shun, HUA Yong-wei. Analysis on Infrared Target Detection Methods[J]. Infrared Technology , 2011, 33(3): 133-136,140. DOI: 10.3969/j.issn.1001-8891.2011.03.002 |
[8] | HANG Dan-ping, LIANG Dong, MA Xue-liang, WEI Wei-dong, TANG Wang-qin, XU Hui. A Denoising Algorithm Based on the Combination of Bayesian Bivariate Model and Contourlet Transform[J]. Infrared Technology , 2010, 32(10): 591-594,600. DOI: 10.3969/j.issn.1001-8891.2010.10.009 |
[9] | Instrumentation for Methane Concentration Detecting Based on NDIR and the Analysis of Disturbances[J]. Infrared Technology , 2009, 31(8): 458-460,466. DOI: 10.3969/j.issn.1001-8891.2009.08.006 |
[10] | XU Bin, ZHENG Lian, WANG Ke-Yong, SONG Cheng-tian. Dim Target Detection Method Based on Singularity Analysis[J]. Infrared Technology , 2005, 27(3): 245-249. DOI: 10.3969/j.issn.1001-8891.2005.03.015 |
1. |
唐晗,周春芬,冯建伟,张巍,普龙,曹凌,马文怡谷,王宏波,毕宇波,蒋旭科,张麟,李虹明. 变光阑长波红外连续变焦光学系统设计. 红外技术. 2024(05): 491-500 .
![]() | |
2. |
唐晗,郑万祥,曾兴容,杨丹,周春芬,曹凌,徐曼,李洪兵,杨开宇. 紧凑低成本非制冷长波红外连续变焦光学设计. 红外与激光工程. 2023(04): 190-200 .
![]() | |
3. |
常诚,钱福丽,芶国汝,唐锐,王体炉,高思博,张韦晨曦,何阳阳,李理,杨启鸣,张杰,刘颖琪,段瑜,杨文运,王光华. 高效叠层OLED白光器件进展. 红外技术. 2023(12): 1141-1152 .
![]() | |
4. |
韩修来,聂亮,任梦茹. 共形光电防撞系统光学窗口像差校正设计. 航空兵器. 2022(01): 90-97 .
![]() | |
5. |
周正平,陈恒,纪辉,李夏青,廖军. 折衍混合轻量化长波红外消热差光学系统设计. 激光与光电子学进展. 2022(10): 392-397 .
![]() | |
6. |
王振东,刘欢,陈阳,潘永强,谢万鹏,韩军. 基于谐衍射理论的0.40~2.50μm宽波段光学系统设计. 激光与光电子学进展. 2022(19): 320-326 .
![]() | |
7. |
王小波,王曦,刘广康,夏树策,付明亮,郝新建,曹乾坤. 基于长波红外探测器的消热差轻量化光学系统设计. 应用光学. 2021(03): 429-435 .
![]() | |
8. |
王烨菲,程艳萍,姚园,李道京,于潇. 薄膜衍射消热差红外光学系统设计. 红外技术. 2021(05): 422-428 .
![]() | |
9. |
梁倩,张涯辉. 大口径光电设备温度补偿模型研究. 激光与光电子学进展. 2021(19): 191-196 .
![]() |