Citation: | LIU Qinghai, JIANG Yun, PENG Wenlian, ZHANG Tong, DAI Xiaodong. Infrared Extinction Calculations of Smokescreen Particles by Moment Method[J]. Infrared Technology , 2021, 43(2): 138-144. |
[1] |
霸书红, 陈永进, 沙育林, 等. 抗红外烟幕中固体消光材料的研究进展[J]. 含能材料, 2018, 26(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201804018.htm
BA Shuhong, CHEN Yongjin, SHA Yulin, et al. Research progress of solid extinction materials in anti-infrared smokescreen[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 364-372. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201804018.htm
|
[2] |
丁国振, 张占月, 周思引, 等. 空间烟幕的扩散机理及衰减性能研究[J]. 红外技术, 2014, 36(11): 914-919. DOI: 10.11846/j.issn.1001_8891.201411012
DING Guozhen, ZHANG Zhanyue, ZHOU Siyin, et al. Study on diffusion mechanism and attenuation performance of space smoke -screen[J]. Infrared Technology, 2014, 36(11): 914-919. DOI: 10.11846/j.issn.1001_8891.201411012
|
[3] |
陈芳芳, 耿蕊, 吕勇. 激光红外大气传输透过率模型研究[J]. 红外技术, 2015, 37(6): 496-501. http://hwjs.nvir.cn/article/id/hwjs201506012
CHEN Fangfang, GENG Rui, LV Yong. Research on the transmittance model of laser infrared atmospheric transmission[J]. Infrared Technology, 2015, 37(6): 496-501. http://hwjs.nvir.cn/article/id/hwjs201506012
|
[4] |
王红霞, 孙红辉, 宋仔标, 等. 基于蒙特卡罗方法的烟幕透过率计算与分析[J]. 红外与激光工程, 2013, 41(5): 1200-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201205017.htm
WANG Hongxia, SUN Honghui, SONG Zibiao, et al. Numerical calculation and analysis of transmittance of smoke screen based on Monte Carlo method[J]. Infrared and Laser Engineering, 2013, 41(5): 1200-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201205017.htm
|
[5] |
胡以华, 黄宝锟, 顾有林, 等. 生物颗粒远红外波段平均消光效率因子模型构建[J]. 红外与激光工程, 2018, 47(10): 1004003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201810017.htm
HU Yihua, HUANG Baokun, GU Youlin, et al. Model construction of biological particles average extinction efficiency factor in far infrared band[J]. Infrared and Laser Engineering, 2018, 47(10): 1004003. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201810017.htm
|
[6] |
Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. New York: John Wiley & Sons, 1983.
|
[7] |
许丽生, 陈洪滨, 丁继烈. 非球形粒子光散射计算研究的进展综述[J]. 地球科学进展, 2014, 29(8): 903-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408004.htm
XU Lisheng, CHEN Hongbin, DING Jilie. An overview of the advances in computational studies on light scattering by nonspherical particles[J]. Advances in Earth Science, 2014, 29(8): 903-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408004.htm
|
[8] |
高太长, 胡帅, 李浩. 气溶胶光散射数值模拟的研究现状及进展[J]. 气象科学, 2017, 37(5): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201705004.htm
GAO Taichang, HU Shuai, LI Hao. Actuality and prospect of aerosol scattering numerical simulation techniques[J]. Journal of the Meteorological Sciences, 2017, 37(5): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201705004.htm
|
[9] |
刘清海, 刘海锋, 代晓东, 等. 石墨烯烟幕红外干扰性能研究[J]. 红外技术, 2019, 41(11): 1071-1076. http://www.cnki.com.cn/Article/CJFDTotal-HWJS201911012.htm
LIU Qinghai, LIU Haifeng, DAI Xiaodong, et al. Infrared interfering performance of graphene smoke screen[J]. Infrared Technology, 2019, 41(11): 1071-1076. http://www.cnki.com.cn/Article/CJFDTotal-HWJS201911012.htm
|
[10] |
郭晓铛, 乔小晶, 李旺昌, 等. 铁磁体/碳复合材料多频干扰性能[J]. 红外与激光工程, 2016, 47(10): 0321001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603030.htm
GUO Xiaodang, QIAO Xiaojing, LI Wangchang, et al. Multi-frequency jamming of ferromagnet/carbon composite[J]. Infrared and Laser Engineering, 2016, 47(10): 0321001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201603030.htm
|
[11] |
Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles[M]. New York: Cambridge, 2002.
|
[12] |
Mautz J, Harrington R. Electromagnetic scattering from a homogeneous body of revolution[J]. Archivfuer Elektronik und Uebertragungstechnik, 1979, 33: 71-80. http://adsabs.harvard.edu/abs/1979ArElU..33...71M
|
[13] |
Mautz J, Harrington R. H-field, E-field, and combined-field solutions for conducting bodies of revolution[J]. Archivfuer Elektronik und Uebertragungstechnik, 1978, 32: 157-164. http://adsabs.harvard.edu/abs/1978ArElU..32..157M
|
[14] |
Mautz J, Harrington R. A combined-source solution for radiation and scattering from a perfectly conducting body[J]. IEEE Trans. on AP, 1979, 27(4): 445-454. DOI: 10.1109/TAP.1979.1142115
|
[15] |
Davidson D, Mc Namara D. Predicting radiation patterns from aperture antennas on structures using the method of moments body of revolution technique[C]IEEE Symposium on Antennas and Propagation, 1987, 25: 25-30.
|
[16] |
Glisson A W, Wilton D R. Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces[J]. IEEE Trans. on AP, 1980, 28: 593-603. DOI: 10.1109/TAP.1980.1142390
|
[17] |
Medgyesi-Mitschg L N, Putnam J M. Electromagnetic scattering from axially inhomogeneous bodies of revolution[J]. IEEE Trans. on Apropag, 1984, 32: 797-806. DOI: 10.1109/TAP.1984.1143430
|
[18] |
Aleksandra B Djurišić, E Herbert Li. Optical properties of graphite[J]. Journal of Applied Physics, 1999, 85(10): 7404-7410. DOI: 10.1063/1.369370
|
[1] | LI Xindong, WANG Juan, FENG Zongxin, SHI Hanbing, WANG Kun. Adaptive Gain Photoelectric Detection Circuit Design[J]. Infrared Technology , 2024, 46(1): 12-19. |
[2] | FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194. |
[3] | LI Xiaofeng, HE Yanbin, CHANG Le, WANG Guangfan, XU Chuanping. Performance Comparison Between Super Second Generation and Third Generation Image Intensifiers[J]. Infrared Technology , 2022, 44(8): 764-777. |
[4] | JING Song, YANG Bo, HUANG Zhangcheng, GONG Haimei, GAO Haijun. Study on High-gain and Low Noise Infrared Focal Plane Readout Circuit[J]. Infrared Technology , 2019, 41(12): 1117-1123. |
[5] | BAI Xiaofeng, GUO Hui, YANG Shuning, SHI Feng, HU Zhong, HOU Zhipeng, CHEN Xulang, HUANG Wujun. Luminance Gain Measurement and Life Prediction of Low-light-level Image Intensifier[J]. Infrared Technology , 2019, 41(3): 203-207. |
[6] | HAO Ziheng, LI Xiangxin, ZHANG Ni, ZHU Yufeng, LI Dan. Preparation of High Gain Secondary Electron Emission Layer for Micro-channel Plate[J]. Infrared Technology , 2018, 40(11): 1077-1080. |
[7] | LIU Shu-lin, DENG Guang-xu, YAN Cheng, SUN Jian-ning, ZHANG Yan-yun, YANG Bao-rong, ZHU Qin. Experiment Research on Relation Between MCP Gain and Electron Energy While First Collision[J]. Infrared Technology , 2011, 33(6): 354-356. DOI: 10.3969/j.issn.1001-8891.2011.06.010 |
[8] | WANG Fang, SONG Yan, LI Lei, YUE Chun-guang, MA Chun-wang, LIU Yu-fang. Design of High Gain and Low Noise Pyroelectric Infrared Detector Preamplifier[J]. Infrared Technology , 2010, 32(11): 663-665. DOI: 10.3969/j.issn.1001-8891.2010.11.011 |
[9] | The Affect of Luminance Gain to Visual Range of LLL Night Vision Apparatus[J]. Infrared Technology , 2004, 26(6): 27-30. DOI: 10.3969/j.issn.1001-8891.2004.06.007 |
[10] | Effects of Metallic Film UV Transmittance on Electron Gain of MCP[J]. Infrared Technology , 2002, 24(3): 31-33,37. DOI: 10.3969/j.issn.1001-8891.2002.03.008 |