Citation: | LYU Pengyuan, LAN Jinjiang, ZENG Xueren, NIU Pei, FANG Liang, ZHAO Songpu. Infrared Object Detection Algorithm Based on Feature Enhancement and Fusion[J]. Infrared Technology , 2024, 46(7): 782-790. |
To address the challenges of low contrast, low signal-to-noise ratio, and low resolution in infrared images, this study proposes an infrared object detection network that combines traditional image processing methods with deep learning technology for feature enhancement and fusion. The main steps in this approach are as follows. 1) Preprocessing: The network employs image filtering, sharpening, and equalization methods to highlight object features in the infrared image and enrich the input information. 2) Feature Extraction: A multi-level information aggregation feature extraction structure has been designed to fully extract and integrate the spatial and semantic information of objects, addressing both single-dimension and multi-dimension features. 3) Attention mechanism: To improve the weighting of key features in the extraction structure, a hybrid attention mechanism is introduced. This captures global context information in multiple ways, enhancing both spatial and channel information. 4) Feature fusion: An adaptive weighting method is applied to fuse features from adjacent dimensions, ensuring accurate and efficient detection of infrared objects. Experimental results on the KAIST, FLIR, and RGBT datasets show that the proposed method significantly improves the performance of infrared object detection compared to existing neural network-based methods. Additionally, this method demonstrates higher adaptability in complex scenes compared to other similar algorithms.
[1] |
邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202310003.htm
SHAO Yanhua, ZHANG Duo, CHU Hongyu, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics and Information Science, 2022, 44(10): 3697-3708. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202310003.htm
|
[2] |
刘洪江, 王懋, 刘丽华, 等. 基于深度学习的小目标检测综述[J]. 计算机工程与科学, 2021, 43(8): 1429-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK202108014.htm
LIU Hongjiang, WANG Mao, LIU Lihua, et al. A review of small object detection based on deep learning[J]. Computer Engineering and Science, 2021, 43(8): 1429-1442. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJK202108014.htm
|
[3] |
LIU Y, SUN P, Wergeles N, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Systems with Applications, 2021, 172(4): 114602.1-114602.14.
|
[4] |
ZUO Z, TONG X, WEI J, et al. AFFPN: attention fusion feature pyramid network for small infrared target detection[J]. Remote Sensing, 2022, 14(14): 3412. DOI: 10.3390/rs14143412
|
[5] |
张传聪, 李范鸣, 饶俊民. 基于特征显著性融合的红外小目标检测[J]. 半导体光电, 2022, 43(4): 828-834. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202204029.htm
ZHANG Chuancong, LI Fanming, RAO Junmin. Infrared small target detection based on feature saliency fusion[J]. Semiconductor Optoelectronics, 2022, 43(4): 828-834. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202204029.htm
|
[6] |
韩金辉, 魏艳涛, 彭真明, 等. 红外弱小目标检测方法综述[J]. 红外与激光工程, 2022, 51(4): 428-451. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204050.htm
HAN Jinhui, WEI Yantao, PENG Zhenming, et al. Overview of infrared weak target detection methods[J]. Infrared and Laser Engineering, 2022, 51(4): 428-451. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202204050.htm
|
[7] |
Viola P, Jones M. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57(2): 137-154. DOI: 10.1023/B:VISI.0000013087.49260.fb
|
[8] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005, 1: 886-893.
|
[9] |
Felzenszwalb P, Mcallester D, Ramanan D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
|
[10] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI: 10.1038/nature14539
|
[11] |
蔡杰, 张华驿, 毋靖轩, 等. 基于YOLOv4-tiny的轻量级电力设备红外目标检测网络研究[J]. 中国科技信息, 2022, 11(14): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK202214031.htm
CAI Jie, ZHANG Huayi, WU Jingxuan, et al. Research on a lightweight infrared target detection network for power equipment based on YOLOv4 tin[J]. China Science and Technology Information, 2022, 11(14): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK202214031.htm
|
[12] |
李向荣, 孙立辉. 融合注意力机制的多尺度红外目标检测[J]. 红外技术, 2022, 21(4): 4-13. http://hwjs.nvir.cn/cn/article/id/2e1d129d-a77a-4dba-8de5-135fb8b75ee7
LI Xiangrong, SUN Lihui. Multi scale infrared target detection using fusion attention mechanism[J]. Infrared Technology, 2022, 21(4): 4-13. http://hwjs.nvir.cn/cn/article/id/2e1d129d-a77a-4dba-8de5-135fb8b75ee7
|
[13] |
Banuls A, Mandow A, Vazquez R, et al. Object detection from thermal infrared and visible light cameras in search and rescue scenes[C]// 2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). IEEE, 2020: 380-386.
|
[14] |
鞠默然, 罗海波, 刘广琦, 等. 采用空间注意力机制的红外弱小目标检测网络[J]. 光学精密工程, 2021, 29(4): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202104021.htm
JU Moran, LUO Haibo, LIU Guangqi, et al. Infrared weak target detection network using spatial attention mechanism[J]. Optical Precision Engineering, 2021, 29(4): 843-853. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202104021.htm
|
[15] |
LI C, LI L, JIANG H, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv, 2022: 2209.02976.
|
[16] |
LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
[17] |
LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6054-6063.
|
[18] |
HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045.
|
[19] |
LI C, LIANG X, LU Y, et al. RGB-T object tracking: Benchmark and baseline[J]. Pattern Recognition, 2019, 96: 106977. DOI: 10.1016/j.patcog.2019.106977
|
[20] |
LIN T Y, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]//European Conference on Computer Vision, 2014: 740-755.
|
[1] | YE Zhihui, WU Jian, ZHAO Xiaozhong, WANG Wenjuan, SHAO Xinguang. Multimodal Object Detection Based on Feature Interaction and Adaptive Grouping Fusion[J]. Infrared Technology , 2025, 47(4): 468-474. |
[2] | LI Minglu, WANG Xiaoxia, HOU Maoxin, YANG Fengbao. An Object Detection Algorithm Based on Infrared-Visible Feature Enhancement and Fusion[J]. Infrared Technology , 2025, 47(3): 385-394. |
[3] | QIAO Zhiping, HUANG Jingying, WANG Lihe. Infrared Dual-band Target Detecting Fusion Algorithm Based on Multiple Features[J]. Infrared Technology , 2024, 46(10): 1201-1208. |
[4] | CHEN Sijing, FU Zhitao, LI Ziqian, NIE Han, SONG Jiawen. A Visible and Infrared Image Fusion Algorithm Based on Adaptive Enhancement and Saliency Detection[J]. Infrared Technology , 2023, 45(9): 907-914. |
[5] | QU Haicheng, HU Qianqian, ZHANG Xuecong. Infrared and Visible Image Fusion Combining Information Perception and Multiscale Features[J]. Infrared Technology , 2023, 45(7): 685-695. |
[6] | WANG Fang, LI Chuanqiang, WU Bo, YU Kun, JIN Chan, CHEN Yake, LU Yinghui. Infrared Small Target Detection Method Based on Multi-Scale Feature Fusion[J]. Infrared Technology , 2021, 43(7): 688-695. |
[7] | WEI Shuigen, WANG Chengwei, ZHANG Congxuan, YAN Huibin. Infrared Dim Target Detection Based on Multi-information Fusion[J]. Infrared Technology , 2019, 41(9): 857-865. |
[8] | YUAN Jingzhen, JIN Wang. Multi-scale Moving Target Detection Method Based on Improved Bilateral Filtering[J]. Infrared Technology , 2019, 41(8): 772-777. |
[9] | ZHANG Shuang-lei, CHEN Fan-sheng, WANG Tao. A Dim Small Target Detection Algorithm Based on Multi-Features Fusion Algorithm[J]. Infrared Technology , 2015, (8): 635-641. |
[10] | XIONG Da-rong, YANG Xuan. Long-Range Target Detection Based on Multisensor Data Fusion[J]. Infrared Technology , 2006, 28(12): 695-698. DOI: 10.3969/j.issn.1001-8891.2006.12.004 |