WANG Shang, ZHANG Xingxiang, SHA Wei, ZHU Junqing. Topology Optimization Design and Analysis of an Integrated Aluminum Alloy Mirror[J]. Infrared Technology , 2022, 44(1): 61-65.
Citation: WANG Shang, ZHANG Xingxiang, SHA Wei, ZHU Junqing. Topology Optimization Design and Analysis of an Integrated Aluminum Alloy Mirror[J]. Infrared Technology , 2022, 44(1): 61-65.

Topology Optimization Design and Analysis of an Integrated Aluminum Alloy Mirror

More Information
  • Received Date: December 12, 2020
  • Revised Date: February 24, 2021
  • Topology optimization design was conducted for an integrated aluminum alloy mirror with a diameter of 300 mm. Under the self-weight load along the optical axis of the mirror, the global flexibility was considered as a constraint, and the minimum volume of the mirror was considered as an objective for iterative optimization to obtain a topology optimization model. According to the results, a solid model was established, and its parameters were optimized. Finally, an integrated mirror structure with a total mass of 2.08 kg, root mean square of 5.9 nm, and lightweight ratio of 70% was obtained. Through comparisons to a contrast structure combined with a parameter optimization process, the validity of the topological structure features was determined, and the support characteristics were analyzed. A support structure consisting of a central hexagon and semi-closed structure contributes significantly to the improvement of surface shape accuracy under the conditions of self-weight. There is an optimal supporting position for the central hexagon structure, where the ratio of height to diameter of the regular hexagon is 0.26.
  • [1]
    Donald R, Donald B, Richard P, et al. Stabilized high-accuracy optical tracking system(SHOTS)[C]//Proceedings of SPIE, 2001, 4365: 10-18.
    [2]
    Mark F Larsen, Harri Latvakoski, Amanda K Mainzer, et al. Wide-field infrared survey explorer science payload update[C]//SPIE, 2008, 7010: 70100G.
    [3]
    Risse S, Scheiding S, Gebhardt A, et al. Development and fabrication of a hyperspectral, mirror based IR telescope with ultra precise manufacturing and mounting techniques for a snap together system assembly[C]//SPIE, 2011, 8176: 8176N.
    [4]
    Niels Tromp, Macro Drost, Johan Pragt. Astron extreme light weighting[C]//SPIE, 2004, 5495: 372-382.
    [5]
    Steffen Kirschstein, Amelia Koch, Jurgen Schoneich, et al. Metal mirror TMA, telescopes of the JSS product line: design and analysis[C]//SPIE, 2005, 59621: 59621M.
    [6]
    范磊, 赵勇志, 曹玉岩. 红外离轴系统金属反射镜设计与分析[J]. 红外技术, 2015, 37(5): 374-379. http://hwjs.nvir.cn/article/id/hwjs201505004

    FAN Lei, ZHAO Yongzhi, CAO Yuyan. Design and analysis of metal mirror for infrared off-axial system[J]. Infrared Technology, 2015, 37(5): 374-379. http://hwjs.nvir.cn/article/id/hwjs201505004
    [7]
    谭双龙, 王灵杰, 张新, 等. 可见光级铝合金反射镜一体化设计与分析[J]. 长春理工大学学报: 自然科学版, 2017, 40(3) : 5-8, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201703002.htm

    TAN Shuanglong, WANG Lingjie, ZHANG Xin, et al. Snap together design and analysis of visible quality aluminum mirror[J]. Journal of Changchun University of Science and Technology, 2017, 40(3): 5-8, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201703002.htm
    [8]
    翟岩, 姜会林, 梅贵, 等. 大口径空间红外相机铍铝合金反射镜组件材料选择与设计[J]. 红外与激光工程, 2020, 49(6): 296-302. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202006036.htm

    ZHAI Yan, JIANG Huilin, MEI Gui, et al. Material selection and design of beryllium-aluminum alloy mirror assembly for large-diameter space infrared camera[J]. Infrared and Laser Engineering, 2020, 49(6): 296-302. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202006036.htm
    [9]
    Rozvany G I N. A critical review of established methods of structural topology optimization [J]. Structural and Multidisciplinary Optimization (S1615-147X), 2007, 34: 123-132. DOI: 10.1007/s00158-006-0068-0
    [10]
    沙巍, 陈长征, 张星祥, 等. 空间反射镜轻量化结构的拓扑优化设计[J]. 光电工程, 2009, 36(4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200904009.htm

    SHA Wei, CHEN Changzheng, ZHANG Xingxiang, et al. Topological lightweight design of space mirror[J]. Opto-Electronic Engineering, 2009, 36(4): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200904009.htm
    [11]
    李畅, 何欣, 刘强. 高体份SiC/Al复合材料空间相机框架的拓扑优化设计[J]. 红外与激光工程, 2014, 43(8): 2526-2531. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201408022.htm

    LI Chang, HE Xin, LIU Qiang. Design and topology optimization of space camera frame fabricated by high volume fraction SiC/Al composite material[J]. Infrared and Laser Engineering, 2014, 43(8): 2526-2531. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201408022.htm
    [12]
    施胤成, 闫怀德, 宫鹏, 等. 基于Zernike系数优化模型的光学反射镜支撑结构拓扑优化设计方法[J]. 光子学报, 2020, 49(6): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202006023.htm

    SHI Yincheng, YAN Huaide, GONG Peng, et al. Topology optimization design method for supporting structures of optical reflective mirrors based on zernike coefficient optimization model[J]. Acta Photonica Sinica, 2020, 49(6): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202006023.htm
  • Related Articles

    [1]ZHANG Jie, WANG Guanghua, DENG Feng, YANG Wenyun, GAO Sibo, LU Chaoyu, MENG Zeyang, GAO Shuxiong, CHANG Cheng, CAO Kunyu, MA Saijiang, LIU Yingqi, WANG Liqiong. Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness[J]. Infrared Technology , 2024, 46(10): 1186-1191.
    [2]WANG Guanghua, ZHOU Fang, CHEN Xuemei, GAO Sibo, ZHANG Jie, DUAN Yu, DUAN Liangfei, QIAN Fuli, YANG Qiming, WU Yanming, ZHAO Mengling, JI Huaxia. Preparation and Performance of Top-Emitting Organic Green Light Emitting Devices[J]. Infrared Technology , 2020, 42(9): 817-822.
    [3]QIAN Fuli, WANG Guanghua, YANG Qiming, DUAN Liangfei, GAO Sibo, WANG Can, ZHOU Yunhong, DUAN Yu, JI Huaxia. Research on the Performance of Luminescent Layer Doping in Top Emitting Monochrome Green OLED Micro-displays[J]. Infrared Technology , 2019, 41(10): 913-917.
    [4]DUAN Yu, ZHANG Xiao-dan, SUN Hao, ZHU Ya-an, WANG Guang-hua, SONG Li-yuan, YU Xiao-hui, WAN Rui-min, JI Hua-xia, LI Ya-wen. Fabrication of High Brightness Top-emitting Green OLED Micro-display[J]. Infrared Technology , 2015, (12): 1022-1026.
    [5]SHEN Di, LI Cheng-fan, ZHAO Jun-juan, YIN Jing-yuan. Volcanic Ash Cloud Detection Based on Variational Bayesian ICA[J]. Infrared Technology , 2014, (2): 120-124.
    [6]TANG Li-bin, JI Rong-bin, Lau Shu-ping, WANG Yi-feng, YE Jing, HUI Yeung-yu, LUK Chi-man, TAI Guo-an, WEI Chang-song, SONG Li-yuan, CHEN Xue-mei, MA Yu, ZHUANG Ji-sheng. The Study on Green Dopant DMQA for OLED by DFT Theoretical Calculation[J]. Infrared Technology , 2011, 33(7): 373-379. DOI: 10.3969/j.issn.1001-8891.2011.07.001
    [7]XU Chao, JIN Wei-qi, LI Ya-qiong. Optical Microscanner Technique and Realization[J]. Infrared Technology , 2006, 28(6): 338-342. DOI: 10.3969/j.issn.1001-8891.2006.06.008
    [8]ZHANG Wen-bo, LI Kai, ZHU You-pan, FAN Da-peng. Research on the Denoising Methods of MEMS Gyro Used in Servo System with Optic Sensors[J]. Infrared Technology , 2006, 28(5): 249-252. DOI: 10.3969/j.issn.1001-8891.2006.05.001
    [9]Evaluation of Binary Optics Manufacturing Parameters[J]. Infrared Technology , 2004, 26(6): 13-16. DOI: 10.3969/j.issn.1001-8891.2004.06.004
    [10]ZUO Yu-bin, FENG Sheng-rong. Application of an Optical Transformer System[J]. Infrared Technology , 2001, 23(1): 28-29. DOI: 10.3969/j.issn.1001-8891.2001.01.009

Catalog

    Article views (298) PDF downloads (53) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return