JIANG Ting, CHEN Weinan, XIA Zhentao, HU Jibao, JIANG Shouwang, SUN Yongxue, LI Taiping, XIE Yongquan. Design and Development of a Low-Light Detection Imaging System Circuit[J]. Infrared Technology , 2022, 44(10): 1045-1051.
Citation: JIANG Ting, CHEN Weinan, XIA Zhentao, HU Jibao, JIANG Shouwang, SUN Yongxue, LI Taiping, XIE Yongquan. Design and Development of a Low-Light Detection Imaging System Circuit[J]. Infrared Technology , 2022, 44(10): 1045-1051.

Design and Development of a Low-Light Detection Imaging System Circuit

More Information
  • Received Date: March 09, 2021
  • Revised Date: March 31, 2021
  • To achieve low-light detection in low-light remote sensing satellites, an imaging circuit is designed based on a low-light complementary metal oxide semiconductor image sensor named GSENSE2020. The imaging circuit facilitates the drive control of the image sensor and the reception and transmission of high-speed image data through a field programmable gate array (FPGA), provides low-noise power supply for the image sensor through DC/DC and low-dropout regulator, and uses a power management integrated circuit to solve the problem of FPGA power-on timing. The circuit also uses DDR3 to perform high-speed image caching and processing and adopts an embedded multimedia card to meet the requirements of image data storage rate and capacity. The intellectual property core and primitives of the FPGA are used instead of a CameraLink interface conversion chip to establish the CameraLink communication protocol. Thus, the circuit can directly transmit image data with high speed to the CarameLink interface. The experimental results show that the circuit's functions and the performance of the imaging system reach the expected design goals. The output data rate of the system reaches 2.4 Gbps, frame rate reaches 25 fps, and signal-to-noise ratio reaches 45.5 dB.
  • [1]
    郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201302000.htm

    GUO Hui, XIANG Shiming, TIAN Minqiang. A review of the development of low-light night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201302000.htm
    [2]
    李德仁, 李熙. 夜光遥感技术在评估经济社会发展中的应用[J]. 宏观质量研究, 2015, 3(4): 1-8. DOI: 10.3969/j.issn.2095-607X.2015.04.001

    LI D, LI X. Application of night-time light remote sensing in evaluating of socioeconomic development [J]. Journal of Macro-Quality Research, 2015, 3(4): 1-8. DOI: 10.3969/j.issn.2095-607X.2015.04.001
    [3]
    李翔. 基于夜光遥感数据的中国2005-2015年居民收入时空变化与驱动力研究[D]. 南京: 南京大学, 2018.

    LI X. Study on Spatiotemporal Change and Driving Force of Resident Income of China from 2005 to 2015 Based on Night Light Remote Sensing Data [D]. Nanjing: Nanjing University, 2018.
    [4]
    李立金, 李浩洋, 徐彭梅, 等. 晨昏轨道微光相机成像策略研究及仿真验证[J]. 航天返回与遥感, 2017, 38(5): 29-34. DOI: 10.3969/j.issn.1009-8518.2017.05.004

    LI Lijin, LI Haoyang, XU Pengmei, et al. Simulation and verification of imaging strategy for low-light-level camera on dawn-dusk orbit[J]. Spacecraft Recovery & Remote Sensing, 2017, 38(5): 29-34. DOI: 10.3969/j.issn.1009-8518.2017.05.004
    [5]
    李贝贝, 韩冰, 田甜, 等. 吉林一号视频卫星应用现状与未来发展[J]. 卫星应用, 2018(3): 23-27. DOI: 10.3969/j.issn.1674-9030.2018.03.007

    LI Beibei, HAN Bing, TIAN Tian, et al. Application status and future development of JL-1 video satellite[J]. Satellite Application, 2018(3): 23-27. DOI: 10.3969/j.issn.1674-9030.2018.03.007
    [6]
    郭晗. 珞珈一号科学试验卫星[J]. 卫星应用, 2018(7): 70. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG201807021.htm

    GUO Han. LJ-1 scientific test satellite[J]. Satellite Application, 2018(7): 70. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG201807021.htm
    [7]
    祝庆贺, 熊文卓, 贺小军. 基于FPGA的星载成像系统设计[J]. 现代电子技术, 2017, 40(15): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201715019.htm

    ZHU Qinghe, XIONG Wenzhuo, HE Xiaojun. Design of satellite⁃borne imaging system based on FPGA[J]. Modern Electronics Technique, 2017, 40(15): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201715019.htm
    [8]
    梁超, 马天翔. 基于FPGA的CMOS成像电路设计[J]. 国外电子测量技术, 2016, 35(4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201604017.htm

    LIANG Chao, MA Tianxiang. Design of CMOS imaging circuit based on FPGA[J]. Foreign Electronic Measurement Technology, 2016, 35(4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GWCL201604017.htm
    [9]
    郑扬帆, 尹达一, 李清灵, 等. 基于低噪声CMOS图像传感器的成像电路设计与实现[J]. 电子设计工程, 2018, 26(4): 188-193. DOI: 10.3969/j.issn.1674-6236.2018.04.041

    ZHENG Yangfan, YIN Dayi, LI Qingling, et al. The design and implementation of imaging circuit based on low⁃noise CMOS image sensor[J]. Electronic Design Engineering, 2018, 26(4): 188-193. DOI: 10.3969/j.issn.1674-6236.2018.04.041
    [10]
    单彦虎, 张晋顼, 任勇峰, 等. 基于FPGA的CameraLink图像数据接口设计[J]. 仪表技术与传感器, 2020(9): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202009011.htm

    SHAN Yanhu, ZHANG Jinxu, REN Yongfeng, et al. Design of CamereLink image data interface based on FPGA[J]. Instrument Technique and Sensor, 2020(9): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202009011.htm
    [11]
    隋延林, 何斌, 张立国, 等. 基于FPGA的超高速CameraLink图像传输[J]. 吉林大学学报: 工学版, 2017, 47(5): 1634-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705041.htm

    SUI Yanlin, HE Bin, ZHANG Liguo, et al. Ultra-high speed CamereLink image transmission based on FPGA[J]. Journal of Jilin University: Engineering and Technology Edition, 2017, 47(5): 1634-1643. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705041.htm
    [12]
    宁永慧, 刘辉, 赵庆磊, 等. 大面阵高帧频CMOS成像电子学系统设计[J]. 光学精密工程, 2019, 27(5): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201905020.htm

    NING Yonghui, LIU Hui, ZHAO Qinglei, et al. High-frame frequency imaging system of large area CMOS image sensor[J]. Optics and Precision Engineering, 2019, 27(5): 1167-1177. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201905020.htm
  • Related Articles

    [1]LI Wenhan, ZHANG Heng, LIU Changhua, SHAO Meng, LU Changzheng, WU Zhiyong. Design of sCMOS Refrigerated Imaging System for High-altitude Research Telescopes[J]. Infrared Technology , 2025, 47(1): 19-28.
    [2]LI Yankai, XU Yuanyuan, LIU Ziqi, CHEN Yuqing. Aerial Infrared Target Detection Based on Improved YOLO v3 Algorithm[J]. Infrared Technology , 2023, 45(4): 386-393.
    [3]LI Shiji, LI Zhongmin, LI Wei. Pedestrian Detection Method Based on Improved ViBe and YOLO v3 Algorithms[J]. Infrared Technology , 2023, 45(2): 137-142.
    [4]LI Yueyi, DING Hongchang, ZHANG Lei, ZHAO Changfu, ZHANG Shibo, WANG Aijia. Pupil Diopter Detection Approach Based on Improved YOLOv3[J]. Infrared Technology , 2022, 44(7): 702-708.
    [5]LIU Lei, QIAN Yunsheng. A Low Illumination Image Acquisition and Processing System Based on FPGA[J]. Infrared Technology , 2022, 44(5): 462-468.
    [6]LIU Zhaoqing, LI Li, DONG Bing, JIN Weiqi. Shack-Hartman Detector Real-time Wavefront Processor Based on FPGA[J]. Infrared Technology , 2021, 43(8): 717-722.
    [7]YI Shi, NIE Yan, ZHANG Yangyi, ZHAO Qianqian, ZHUANG Yitong. Nighttime Target Recognition Method Based on Infrared Thermal Imaging and YOLOv3[J]. Infrared Technology , 2019, 41(10): 970-975.
    [8]FAN Yongjie, QIN Qiang, LIN Huan, CHEN Hua. Miniaturized CameraLink to 3G-SDI Video Conversion Circuit[J]. Infrared Technology , 2019, 41(6): 545-548.
    [9]WANG Hao, ZENG Xianguang, SUN De'en, PEI Chengrui, HUANG Jiamu. Preparation and Properties of 3-5μm Infrared Detection Coatings[J]. Infrared Technology , 2017, 39(8): 677-681,687.
    [10]Study of a 3 μm to 13 μm Wideband Infrared Beamsplitter[J]. Infrared Technology , 2011, 33(12): 695-698. DOI: 10.3969/j.issn.1001-8891.2011.12.004

Catalog

    Article views (154) PDF downloads (75) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return