LI Jiayang, ZHOU Yingyue, YANG Yang, LI Xiaoxia. High-Security Finger Vein Recognition System Using Lightweight Neural Network[J]. Infrared Technology , 2024, 46(2): 168-175.
Citation: LI Jiayang, ZHOU Yingyue, YANG Yang, LI Xiaoxia. High-Security Finger Vein Recognition System Using Lightweight Neural Network[J]. Infrared Technology , 2024, 46(2): 168-175.

High-Security Finger Vein Recognition System Using Lightweight Neural Network

More Information
  • Received Date: July 29, 2022
  • Revised Date: September 17, 2022
  • Special materials can fake finger veins to deceive recognition systems, and the large amount of computation is required for finger vein recognition using convolutional neural networks. In this study, a finger vein recognition system with an in vivo detection function and a lightweight convolutional neural network structure was designed. Changes in finger pulse waves were detected using Photo Plethysmo Graphy to determine whether the object was living. The ResNet-18 convolutional neural network was improved using a pruning and channel recovery method, and L1 regularization was combined to improve the feature selection ability of the convolutional neural network. On the basis of improving the accuracy of the algorithm, the network can effectively reduce the consumption of computing resources. The experimental results show that by using the improved pruning and channel recovery optimization structure, the number of parameters decreases by 75.6%, the amount of calculations decreases by 25.6 %, and the iso-error rates obtained in the Shandong University and Hong Kong Polytechnic University finger vein databases are 0.025% and 0.085%, respectively, which are significantly lower than those of RESNET-18 (0.117% and 0.213%).
  • [1]
    Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Sciety[M]. Springer Science & Business Media, 1999.
    [2]
    黄易豪. 基于手部静脉图像的身份识别关键技术研究[D]. 绵阳: 西南科技大学, 2021.

    HUANG Yihao. Research on Key Technologies of Identity Recognition Based on Hand Vein Images[D]. Mianyang: Southwest University of Science and Technology, 2021.
    [3]
    Mohsin A H, Zaidan A A, Zaidan B B, et al. Finger vein biometrics: Taxonomy analysis, open challenges, future directions, and recommended solution for decentralised network architectures[J]. IEEE Access, 2020, 8: 9821-9845. DOI: 10.1109/ACCESS.2020.2964788
    [4]
    Ahmad Radzi S, Khalil-Hani M, Bakhteri R. Finger-vein biometric identification using convolutional neural network[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24(3): 1863-1878.
    [5]
    Das R, Piciucco E, Maiorana E, et al. Convolutional neural network for finger-vein-based biometric identification[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(2): 360-373. DOI: 10.1109/TIFS.2018.2850320
    [6]
    HONG H G, Lee M B, Park K R. Convolutional neural network-based finger-vein recognition using NIR image sensors[J]. Sensors, 2017, 17(6): 1297-1318. DOI: 10.3390/s17061297
    [7]
    LI R, SU Z, ZHANG H, et al. Application of improved GCNs in feature representation of finger-vein[J]. Journal of Signal Processing, 2020, 36(4): 550-561.
    [8]
    HE X, CHEN X. Finger vein recognition based on improved convolution neural network[J]. Comput. Eng. Design, 2019, 40: 562-566.
    [9]
    DAI Y, HUANG B, LI W, et al. A method for capturing the finger-vein image using nonuniform intensity infrared light[C]//2008 Congress on Image and Signal Processing, 2008: 501-505.
    [10]
    YU X, YANG W, LIAO Q, et al. A novel finger vein pattern extraction approach for near-infrared image[C]//2009 2nd International Congress on Image and Signal Processing, 2009: 1-5.
    [11]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
    [12]
    陈鹤森. 基于深度学习的细粒度图像识别研究[D]. 北京: 北京邮电大学, 2018.

    CHEN Hesen. Research on Fine-Grained Image Recognition Based on Deep Learning[D]. Beijing: Beijing University of Posts and Tele-Communications, 2018.
    [13]
    LIU J, ZHUANG B, ZHUANG Z, et al. Discrimination-aware network pruning for deep model compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4035-4051.
    [14]
    HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
    [15]
    弓雷. ARM嵌入式Linux系统开发详解[M]. 2版: 北京: 清华大学出版社, 2014.

    GONG Lei. ARM Embedded Linux System Development Details[M]. 2nd edition: Beijing: Tsinghua University Publishing House Co. Ltd., 2014.
    [16]
    CHEN X, HUANG M, FU Y. Simultaneous acquisition of near infrared image of hand vein and pulse for liveness dorsal hand vein identification[J]. Infrared Physics & Technology, 2021, 115: 103688.
    [17]
    WU W, YUAN W, LIN S, et al. Selection of typical wavelength for palm vein recognition[J]. Acta Optica Sinica, 2012, 32(12): 1211002. DOI: 10.3788/AOS201232.1211002
    [18]
    LIU J, YAN B P-Y, DAI W-X, et al. Multi-wavelength photo-plethysmography method for skin arterial pulse extraction[J]. Biomedical Optics Express, 2016, 7(10): 4313-4326. DOI: 10.1364/BOE.7.004313
    [19]
    YIN Y, LIU L, SUN X. SDUMLA-HMT: a multimodal biometric database[C]// Chinese Conference on Biometric Recognition(CCBR), 2011: 260-268.
    [20]
    Kumar A, ZHOU Y. Human identification using finger images[J]. IEEE Transactions on Image Processing, 2011, 21(4): 2228-2244.
    [21]
    罗建豪. 面向深度卷积神经网络的模型剪枝算法研究[D]. 南京: 南京大学, 2020.

    LUO Jianhao. Research on Model Pruning Algorithmsfor Deep Convolutional NeuralNetworks[D]. Nanjing: Nanjing University, 2020.
    [22]
    LI H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convnets[J/OL]. arXiv preprint arXiv: 1608.08710, 2016.
    [23]
    HONG H G, Lee M B, Park K R. Convolutional neural network-based finger-vein recognition using NIR image sensors[J]. Sensors, 2017, 17(6): 1297. DOI: 10.3390/s17061297
  • Related Articles

    [1]ZHANG Jie, WANG Guanghua, DENG Feng, YANG Wenyun, GAO Sibo, LU Chaoyu, MENG Zeyang, GAO Shuxiong, CHANG Cheng, CAO Kunyu, MA Saijiang, LIU Yingqi, WANG Liqiong. Fabrication of GaN-based Micro-LED Green Micro-display with High Brightness[J]. Infrared Technology , 2024, 46(10): 1186-1191.
    [2]WANG Guanghua, ZHOU Fang, CHEN Xuemei, GAO Sibo, ZHANG Jie, DUAN Yu, DUAN Liangfei, QIAN Fuli, YANG Qiming, WU Yanming, ZHAO Mengling, JI Huaxia. Preparation and Performance of Top-Emitting Organic Green Light Emitting Devices[J]. Infrared Technology , 2020, 42(9): 817-822.
    [3]QIAN Fuli, WANG Guanghua, YANG Qiming, DUAN Liangfei, GAO Sibo, WANG Can, ZHOU Yunhong, DUAN Yu, JI Huaxia. Research on the Performance of Luminescent Layer Doping in Top Emitting Monochrome Green OLED Micro-displays[J]. Infrared Technology , 2019, 41(10): 913-917.
    [4]DUAN Yu, ZHANG Xiao-dan, SUN Hao, ZHU Ya-an, WANG Guang-hua, SONG Li-yuan, YU Xiao-hui, WAN Rui-min, JI Hua-xia, LI Ya-wen. Fabrication of High Brightness Top-emitting Green OLED Micro-display[J]. Infrared Technology , 2015, (12): 1022-1026.
    [5]SHEN Di, LI Cheng-fan, ZHAO Jun-juan, YIN Jing-yuan. Volcanic Ash Cloud Detection Based on Variational Bayesian ICA[J]. Infrared Technology , 2014, (2): 120-124.
    [6]TANG Li-bin, JI Rong-bin, Lau Shu-ping, WANG Yi-feng, YE Jing, HUI Yeung-yu, LUK Chi-man, TAI Guo-an, WEI Chang-song, SONG Li-yuan, CHEN Xue-mei, MA Yu, ZHUANG Ji-sheng. The Study on Green Dopant DMQA for OLED by DFT Theoretical Calculation[J]. Infrared Technology , 2011, 33(7): 373-379. DOI: 10.3969/j.issn.1001-8891.2011.07.001
    [7]XU Chao, JIN Wei-qi, LI Ya-qiong. Optical Microscanner Technique and Realization[J]. Infrared Technology , 2006, 28(6): 338-342. DOI: 10.3969/j.issn.1001-8891.2006.06.008
    [8]ZHANG Wen-bo, LI Kai, ZHU You-pan, FAN Da-peng. Research on the Denoising Methods of MEMS Gyro Used in Servo System with Optic Sensors[J]. Infrared Technology , 2006, 28(5): 249-252. DOI: 10.3969/j.issn.1001-8891.2006.05.001
    [9]Evaluation of Binary Optics Manufacturing Parameters[J]. Infrared Technology , 2004, 26(6): 13-16. DOI: 10.3969/j.issn.1001-8891.2004.06.004
    [10]ZUO Yu-bin, FENG Sheng-rong. Application of an Optical Transformer System[J]. Infrared Technology , 2001, 23(1): 28-29. DOI: 10.3969/j.issn.1001-8891.2001.01.009
  • Cited by

    Periodical cited type(3)

    1. 张健,黄安穴. 基于划区域宇宙算法的红外与可见光图像融合研究. 光电子·激光. 2024(09): 962-970 .
    2. 巩稼民,刘尚辉,金库,刘海洋,魏戌盟. 基于改进的区域生长法与引导滤波的图像融合. 激光与光电子学进展. 2023(16): 156-163 .
    3. 邢静,刘小虎. 基于可见光与红外图像融合的目标跟踪技术研究. 电子制作. 2022(22): 44-46 .

    Other cited types(4)

Catalog

    Article views (96) PDF downloads (37) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return