Citation: | LI Jiayang, ZHOU Yingyue, YANG Yang, LI Xiaoxia. High-Security Finger Vein Recognition System Using Lightweight Neural Network[J]. Infrared Technology , 2024, 46(2): 168-175. |
[1] |
Jain A, Bolle R, Pankanti S. Biometrics: Personal Identification in Networked Sciety[M]. Springer Science & Business Media, 1999.
|
[2] |
黄易豪. 基于手部静脉图像的身份识别关键技术研究[D]. 绵阳: 西南科技大学, 2021.
HUANG Yihao. Research on Key Technologies of Identity Recognition Based on Hand Vein Images[D]. Mianyang: Southwest University of Science and Technology, 2021.
|
[3] |
Mohsin A H, Zaidan A A, Zaidan B B, et al. Finger vein biometrics: Taxonomy analysis, open challenges, future directions, and recommended solution for decentralised network architectures[J]. IEEE Access, 2020, 8: 9821-9845. DOI: 10.1109/ACCESS.2020.2964788
|
[4] |
Ahmad Radzi S, Khalil-Hani M, Bakhteri R. Finger-vein biometric identification using convolutional neural network[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24(3): 1863-1878.
|
[5] |
Das R, Piciucco E, Maiorana E, et al. Convolutional neural network for finger-vein-based biometric identification[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(2): 360-373. DOI: 10.1109/TIFS.2018.2850320
|
[6] |
HONG H G, Lee M B, Park K R. Convolutional neural network-based finger-vein recognition using NIR image sensors[J]. Sensors, 2017, 17(6): 1297-1318. DOI: 10.3390/s17061297
|
[7] |
LI R, SU Z, ZHANG H, et al. Application of improved GCNs in feature representation of finger-vein[J]. Journal of Signal Processing, 2020, 36(4): 550-561.
|
[8] |
HE X, CHEN X. Finger vein recognition based on improved convolution neural network[J]. Comput. Eng. Design, 2019, 40: 562-566.
|
[9] |
DAI Y, HUANG B, LI W, et al. A method for capturing the finger-vein image using nonuniform intensity infrared light[C]//2008 Congress on Image and Signal Processing, 2008: 501-505.
|
[10] |
YU X, YANG W, LIAO Q, et al. A novel finger vein pattern extraction approach for near-infrared image[C]//2009 2nd International Congress on Image and Signal Processing, 2009: 1-5.
|
[11] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[12] |
陈鹤森. 基于深度学习的细粒度图像识别研究[D]. 北京: 北京邮电大学, 2018.
CHEN Hesen. Research on Fine-Grained Image Recognition Based on Deep Learning[D]. Beijing: Beijing University of Posts and Tele-Communications, 2018.
|
[13] |
LIU J, ZHUANG B, ZHUANG Z, et al. Discrimination-aware network pruning for deep model compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4035-4051.
|
[14] |
HAN K, WANG Y, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
|
[15] |
弓雷. ARM嵌入式Linux系统开发详解[M]. 2版: 北京: 清华大学出版社, 2014.
GONG Lei. ARM Embedded Linux System Development Details[M]. 2nd edition: Beijing: Tsinghua University Publishing House Co. Ltd., 2014.
|
[16] |
CHEN X, HUANG M, FU Y. Simultaneous acquisition of near infrared image of hand vein and pulse for liveness dorsal hand vein identification[J]. Infrared Physics & Technology, 2021, 115: 103688.
|
[17] |
WU W, YUAN W, LIN S, et al. Selection of typical wavelength for palm vein recognition[J]. Acta Optica Sinica, 2012, 32(12): 1211002. DOI: 10.3788/AOS201232.1211002
|
[18] |
LIU J, YAN B P-Y, DAI W-X, et al. Multi-wavelength photo-plethysmography method for skin arterial pulse extraction[J]. Biomedical Optics Express, 2016, 7(10): 4313-4326. DOI: 10.1364/BOE.7.004313
|
[19] |
YIN Y, LIU L, SUN X. SDUMLA-HMT: a multimodal biometric database[C]// Chinese Conference on Biometric Recognition(CCBR), 2011: 260-268.
|
[20] |
Kumar A, ZHOU Y. Human identification using finger images[J]. IEEE Transactions on Image Processing, 2011, 21(4): 2228-2244.
|
[21] |
罗建豪. 面向深度卷积神经网络的模型剪枝算法研究[D]. 南京: 南京大学, 2020.
LUO Jianhao. Research on Model Pruning Algorithmsfor Deep Convolutional NeuralNetworks[D]. Nanjing: Nanjing University, 2020.
|
[22] |
LI H, Kadav A, Durdanovic I, et al. Pruning filters for efficient convnets[J/OL]. arXiv preprint arXiv: 1608.08710, 2016.
|
[23] |
HONG H G, Lee M B, Park K R. Convolutional neural network-based finger-vein recognition using NIR image sensors[J]. Sensors, 2017, 17(6): 1297. DOI: 10.3390/s17061297
|
1. |
张宇,张健,齐林. 基于遗传算法优化Canny算子的织绣文物纹样抽取方法研究. 丝绸. 2024(06): 1-12 .
![]() | |
2. |
严丹昭,陈晶,兰旺耀,廖一鹏. 基于表层温度深度学习的电缆接头绝缘劣化非接触式诊断. 红外技术. 2024(06): 712-721 .
![]() | |
3. |
王鑫刚,田军委,于亚琳,王沁,张杰. 改进Canny算法的红外人脸图像边缘轮廓提取. 应用光学. 2023(01): 61-70 .
![]() | |
4. |
肖建英,邓强. 三维光学模型的激光图像边缘检测研究. 激光杂志. 2023(08): 110-114 .
![]() | |
5. |
涂伟沪,蔡玲霞,李学军. 基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测. 食品与机械. 2022(02): 167-172+202 .
![]() | |
6. |
高海韬,李丹宁,王彬,唐鑫鑫. 运动模糊图像PSF参数估计方法改进及图像复原. 计算机工程. 2022(09): 197-203+212 .
![]() | |
7. |
赵一鸣,胡燕海. 用于小型注塑件边缘提取的改进坎尼算法. 机械制造. 2022(07): 1-5+11 .
![]() | |
8. |
杨林超,张新锋,刘康. 管道机器人采集图像缺陷检测方法研究. 工业仪表与自动化装置. 2021(06): 48-51+64 .
![]() |