Citation: | REN Quanhui, SUN Yijie, HUANG Cansheng. Infrared and Visible Image Fusion Algorithm Based on Regional Similarity[J]. Infrared Technology , 2022, 44(5): 492-496. |
[1] |
MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[2] |
LIU Y, CHEN X, Ward R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489. DOI: 10.1109/LSP.2019.2895749
|
[3] |
蔡铠利, 石振刚. 红外图像与可见光图像融合算法研究[J]. 沈阳理工大学学报, 2016(3): 17-22. DOI: 10.3969/j.issn.1003-1251.2016.03.004
CAI Kaili, SHI Zhengang. Research on Image Fusion Algorithm of Infrared and Visible Image[J]. Journal of Shenyang Ligong University, 2016(3): 17-22. DOI: 10.3969/j.issn.1003-1251.2016.03.004
|
[4] |
郝志成, 吴川, 杨航, 等. 基于双边纹理滤波的图像细节增强方法[J]. 中国光学, 2016, 9(4): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201604005.htm
HAO Zhicheng, WU Chuan, YANG Hang, et al. Image detail enhancement method based on multi-scale bilateral texture filter[J]. Chinese Optics, 2016, 9(4): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201604005.htm
|
[5] |
FU Z, WANG X, LI X, et al. Infrared and visible image fusion based on visual saliency and NSCT[J]. Journal of University of Electronic Science & Technology of China, 2017, 46(2): 357-362.
|
[6] |
DING S, ZHAO X, HUI X, et al. NSCT-PCNN image fusion based on image gradient motivation[J]. IET Computer Vision, 2018, 12(4): 377-383. DOI: 10.1049/iet-cvi.2017.0285
|
[7] |
KOU F, LI Z, WEN C, et al. Edge-Preserving smoothing pyramid based multi-scale exposure fusion[J]. Journal of Visual Communication & Image Representation, 2018, 53: 235-244.
|
[8] |
ZHOU Z, BO W, SUN L, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15-26. DOI: 10.1016/j.inffus.2015.11.003
|
[9] |
YANG B, LUO J, GUO L, et al. Simultaneous image fusion and demosaicing via compressive sensing[J]. Information Processing Letters, 2016, 116(7): 447-454. DOI: 10.1016/j.ipl.2016.03.001
|
[10] |
ZHANG Y, BAI X, WANG T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81-101. DOI: 10.1016/j.inffus.2016.09.006
|
[11] |
MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
|
[12] |
YANG Y, QUE Y, HUANG S, et al. Multiple visual features measurement with gradient domain guided filtering for multisensor image fusion[J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66(4): 691-703.
|
[13] |
ZHANG L, ZENG G, WEI J. Adaptive region-segmentation multi-focus image fusion based on differential evolution[J]. International Journal of Pattern Recognition & Artificial Intelligence, 2018, 33(3): 32.
|
[14] |
YAN X, QIN HL, LI J, et al. Infrared and visible image fusion using multiscale directional nonlocal means filter[J]. Applied Optics, 2015, 54(13): 4299-4308. DOI: 10.1364/AO.54.004299
|
[15] |
CUI G M, FENG H J, XU Z H, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209. DOI: 10.1016/j.optcom.2014.12.032
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96. |
[3] | LI Xu, XIAO Zhiyun, JIANG Yedong, WANG Yazhou, SU Yu. Fault Detection and Identification of Multi-Source Insulators Based on Improved YOLOv7[J]. Infrared Technology , 2024, 46(11): 1325-1333. |
[4] | YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292. |
[5] | GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005. |
[6] | WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801. |
[7] | GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51. |
[8] | SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197. |
[9] | KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981. |
[10] | HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153. |
1. |
李阳,丘建培,宋坤. 基于音视频多模态数据感知的智能巡检系统设计与应用. 现代信息科技. 2025(03): 189-193 .
![]() | |
2. |
周亚男. 光伏电站运维现状分析. 太阳能. 2024(01): 12-19 .
![]() | |
3. |
兰金江,曾学仁,方亮,田楠,王志强,刘继江. 基于无人机巡检的光伏缺陷检测与定位. 科技创新与应用. 2024(18): 14-19 .
![]() | |
4. |
任鹏,张哲,于洋. 基于边缘计算的县域分布式光伏智能巡检方法. 吉林电力. 2024(03): 28-31 .
![]() | |
5. |
温建国. 智能无人机红外巡检技术在光伏电站故障诊断中的应用. 中国战略新兴产业. 2024(26): 23-25 .
![]() | |
6. |
侯伟,陈雅,宋承继,刘强锋. 基于改进YOLOv5算法的无人机巡检图像智能识别方法. 微型电脑应用. 2024(09): 26-30+36 .
![]() | |
7. |
杨梅,马建新,陈炳森,赵泽政. 光伏电站无人机自动巡检及故障诊断技术应用. 计量与测试技术. 2024(09): 89-92 .
![]() | |
8. |
吴张宇,吴池莉,于慧铭,政幸男,张啸宇. 面向大规模光伏电站的无人机巡检路径规划策略. 综合智慧能源. 2024(11): 46-53 .
![]() | |
9. |
李峰,林维修,乐锋,许育燕,张斌. 一种基于无人机的光伏异常检测方法研究. 人工智能科学与工程. 2024(04): 86-92 .
![]() | |
10. |
陈大涛,高伟新,宇文磊县,赵良成,高永鑫,吴良,回峰. 基于无人机巡查的光伏电站检查系统设计. 集成电路应用. 2024(12): 72-75 .
![]() | |
11. |
曹瑞安. 基于AI机器视觉技术的新能源无人值守场站自动巡检方法. 电力大数据. 2024(11): 48-56 .
![]() | |
12. |
吕德利,王旋. 一种基于GPS定位技术的无人机智能光伏巡检系统. 科技创新与应用. 2023(06): 37-40 .
![]() | |
13. |
李德维. 光伏电站组件诊断中无人机智能巡检的应用. 光源与照明. 2023(01): 102-105 .
![]() | |
14. |
潘巧波,李昂,何梓瑜,唐梓彭. 数字化电厂智慧平台在光伏电站的应用. 黑龙江电力. 2023(02): 137-142 .
![]() | |
15. |
张永伟,李贵,马玉权,汪海波. 基于高精度快速故障识别的智能光伏视频巡检系统研究. 电力信息与通信技术. 2023(06): 73-78 .
![]() | |
16. |
范群. 智能集控平台在光伏发电站生产中的应用策略. 光源与照明. 2023(06): 142-144 .
![]() | |
17. |
白玉龙,孙茹洁,哈永华. 光伏电站自主巡检中的无人机视觉定位算法研究. 电子元器件与信息技术. 2023(05): 72-75 .
![]() | |
18. |
邓拥正,杨健. 浅谈无人机在光伏电站巡检中的应用. 红水河. 2023(04): 69-72 .
![]() | |
19. |
王佳文,朱永灿,王帅,李科锋. 航拍光伏组件图像的畸变校正方法研究. 湖南电力. 2023(04): 74-79 .
![]() | |
20. |
周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 .
![]() | |
21. |
李智强. 基于无人机航拍摄影的变电站运行环境智能巡检方法. 电气技术与经济. 2023(10): 146-148 .
![]() | |
22. |
艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
![]() | |
23. |
周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 .
![]() | |
24. |
孙霞,张洁,赵厚群,张坤乾,缪玉婷. Petri网在架空电缆无人机巡检方面的研究. 绥化学院学报. 2022(12): 139-142 .
![]() | |
25. |
李垚,魏文震,杨增健,赵鑫,吕健. 基于大数据的变电站在线智能巡视系统的研究. 电力大数据. 2022(11): 47-55 .
![]() |