REN Quanhui, SUN Yijie, HUANG Cansheng. Infrared and Visible Image Fusion Algorithm Based on Regional Similarity[J]. Infrared Technology , 2022, 44(5): 492-496.
Citation: REN Quanhui, SUN Yijie, HUANG Cansheng. Infrared and Visible Image Fusion Algorithm Based on Regional Similarity[J]. Infrared Technology , 2022, 44(5): 492-496.

Infrared and Visible Image Fusion Algorithm Based on Regional Similarity

More Information
  • Received Date: August 28, 2021
  • Revised Date: November 22, 2021
  • To address the problems of local blur and incomplete background information in the traditional fusion algorithm of infrared and visible images, a new fusion algorithm is proposed in this paper. The edge detection operator was used to extract the image contour, and weighted fusion based on energy was also executed. The similarity between regions was used to extract the signal domain. Finally, image fusion is performed according to the over-signal strength. To verify the correctness of the algorithm, a comparative test was conducted and a quantitative analysis was performed using three parameters: standard deviation, information entropy, and average gradient. Compared with the traditional weighted average algorithm, the standard deviation of this method was up to 106.3 %. The test results confirmed that the fusion method proposed in this study has a better fusion effect and practical value.
  • [1]
    MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
    [2]
    LIU Y, CHEN X, Ward R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489. DOI: 10.1109/LSP.2019.2895749
    [3]
    蔡铠利, 石振刚. 红外图像与可见光图像融合算法研究[J]. 沈阳理工大学学报, 2016(3): 17-22. DOI: 10.3969/j.issn.1003-1251.2016.03.004

    CAI Kaili, SHI Zhengang. Research on Image Fusion Algorithm of Infrared and Visible Image[J]. Journal of Shenyang Ligong University, 2016(3): 17-22. DOI: 10.3969/j.issn.1003-1251.2016.03.004
    [4]
    郝志成, 吴川, 杨航, 等. 基于双边纹理滤波的图像细节增强方法[J]. 中国光学, 2016, 9(4): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201604005.htm

    HAO Zhicheng, WU Chuan, YANG Hang, et al. Image detail enhancement method based on multi-scale bilateral texture filter[J]. Chinese Optics, 2016, 9(4): 423-431. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201604005.htm
    [5]
    FU Z, WANG X, LI X, et al. Infrared and visible image fusion based on visual saliency and NSCT[J]. Journal of University of Electronic Science & Technology of China, 2017, 46(2): 357-362.
    [6]
    DING S, ZHAO X, HUI X, et al. NSCT-PCNN image fusion based on image gradient motivation[J]. IET Computer Vision, 2018, 12(4): 377-383. DOI: 10.1049/iet-cvi.2017.0285
    [7]
    KOU F, LI Z, WEN C, et al. Edge-Preserving smoothing pyramid based multi-scale exposure fusion[J]. Journal of Visual Communication & Image Representation, 2018, 53: 235-244.
    [8]
    ZHOU Z, BO W, SUN L, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15-26. DOI: 10.1016/j.inffus.2015.11.003
    [9]
    YANG B, LUO J, GUO L, et al. Simultaneous image fusion and demosaicing via compressive sensing[J]. Information Processing Letters, 2016, 116(7): 447-454. DOI: 10.1016/j.ipl.2016.03.001
    [10]
    ZHANG Y, BAI X, WANG T. Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure[J]. Information Fusion, 2017, 35: 81-101. DOI: 10.1016/j.inffus.2016.09.006
    [11]
    MA J, ZHOU Z, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
    [12]
    YANG Y, QUE Y, HUANG S, et al. Multiple visual features measurement with gradient domain guided filtering for multisensor image fusion[J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66(4): 691-703.
    [13]
    ZHANG L, ZENG G, WEI J. Adaptive region-segmentation multi-focus image fusion based on differential evolution[J]. International Journal of Pattern Recognition & Artificial Intelligence, 2018, 33(3): 32.
    [14]
    YAN X, QIN HL, LI J, et al. Infrared and visible image fusion using multiscale directional nonlocal means filter[J]. Applied Optics, 2015, 54(13): 4299-4308. DOI: 10.1364/AO.54.004299
    [15]
    CUI G M, FENG H J, XU Z H, et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition[J]. Optics Communications, 2015, 341: 199-209. DOI: 10.1016/j.optcom.2014.12.032
  • Related Articles

    [1]ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366.
    [2]CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96.
    [3]LI Xu, XIAO Zhiyun, JIANG Yedong, WANG Yazhou, SU Yu. Fault Detection and Identification of Multi-Source Insulators Based on Improved YOLOv7[J]. Infrared Technology , 2024, 46(11): 1325-1333.
    [4]YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292.
    [5]GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005.
    [6]WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801.
    [7]GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51.
    [8]SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197.
    [9]KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981.
    [10]HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153.
  • Cited by

    Periodical cited type(25)

    1. 李阳,丘建培,宋坤. 基于音视频多模态数据感知的智能巡检系统设计与应用. 现代信息科技. 2025(03): 189-193 .
    2. 周亚男. 光伏电站运维现状分析. 太阳能. 2024(01): 12-19 .
    3. 兰金江,曾学仁,方亮,田楠,王志强,刘继江. 基于无人机巡检的光伏缺陷检测与定位. 科技创新与应用. 2024(18): 14-19 .
    4. 任鹏,张哲,于洋. 基于边缘计算的县域分布式光伏智能巡检方法. 吉林电力. 2024(03): 28-31 .
    5. 温建国. 智能无人机红外巡检技术在光伏电站故障诊断中的应用. 中国战略新兴产业. 2024(26): 23-25 .
    6. 侯伟,陈雅,宋承继,刘强锋. 基于改进YOLOv5算法的无人机巡检图像智能识别方法. 微型电脑应用. 2024(09): 26-30+36 .
    7. 杨梅,马建新,陈炳森,赵泽政. 光伏电站无人机自动巡检及故障诊断技术应用. 计量与测试技术. 2024(09): 89-92 .
    8. 吴张宇,吴池莉,于慧铭,政幸男,张啸宇. 面向大规模光伏电站的无人机巡检路径规划策略. 综合智慧能源. 2024(11): 46-53 .
    9. 李峰,林维修,乐锋,许育燕,张斌. 一种基于无人机的光伏异常检测方法研究. 人工智能科学与工程. 2024(04): 86-92 .
    10. 陈大涛,高伟新,宇文磊县,赵良成,高永鑫,吴良,回峰. 基于无人机巡查的光伏电站检查系统设计. 集成电路应用. 2024(12): 72-75 .
    11. 曹瑞安. 基于AI机器视觉技术的新能源无人值守场站自动巡检方法. 电力大数据. 2024(11): 48-56 .
    12. 吕德利,王旋. 一种基于GPS定位技术的无人机智能光伏巡检系统. 科技创新与应用. 2023(06): 37-40 .
    13. 李德维. 光伏电站组件诊断中无人机智能巡检的应用. 光源与照明. 2023(01): 102-105 .
    14. 潘巧波,李昂,何梓瑜,唐梓彭. 数字化电厂智慧平台在光伏电站的应用. 黑龙江电力. 2023(02): 137-142 .
    15. 张永伟,李贵,马玉权,汪海波. 基于高精度快速故障识别的智能光伏视频巡检系统研究. 电力信息与通信技术. 2023(06): 73-78 .
    16. 范群. 智能集控平台在光伏发电站生产中的应用策略. 光源与照明. 2023(06): 142-144 .
    17. 白玉龙,孙茹洁,哈永华. 光伏电站自主巡检中的无人机视觉定位算法研究. 电子元器件与信息技术. 2023(05): 72-75 .
    18. 邓拥正,杨健. 浅谈无人机在光伏电站巡检中的应用. 红水河. 2023(04): 69-72 .
    19. 王佳文,朱永灿,王帅,李科锋. 航拍光伏组件图像的畸变校正方法研究. 湖南电力. 2023(04): 74-79 .
    20. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 . 本站查看
    21. 李智强. 基于无人机航拍摄影的变电站运行环境智能巡检方法. 电气技术与经济. 2023(10): 146-148 .
    22. 艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
    23. 周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 . 本站查看
    24. 孙霞,张洁,赵厚群,张坤乾,缪玉婷. Petri网在架空电缆无人机巡检方面的研究. 绥化学院学报. 2022(12): 139-142 .
    25. 李垚,魏文震,杨增健,赵鑫,吕健. 基于大数据的变电站在线智能巡视系统的研究. 电力大数据. 2022(11): 47-55 .

    Other cited types(10)

Catalog

    Article views PDF downloads Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return