DU Juan, WU Shaohua, KANG Jie, LI Gang, SUN Xing, WU Yingqiang. Optoelectronic Applications of Sapphire Crystal Material[J]. Infrared Technology , 2025, 47(1): 10-18.
Citation: DU Juan, WU Shaohua, KANG Jie, LI Gang, SUN Xing, WU Yingqiang. Optoelectronic Applications of Sapphire Crystal Material[J]. Infrared Technology , 2025, 47(1): 10-18.

Optoelectronic Applications of Sapphire Crystal Material

More Information
  • Received Date: November 28, 2023
  • Revised Date: April 07, 2024
  • With technological developments, complex optoelectronic application environments have increased the requirements for optical materials and their properties. Due to their excellent comprehensive performance and relatively mature preparation technology, optoelectronic applications of sapphire have attracted considerable attention. Sapphire has high spectral transmission performance in multiple spectral bands such as ultraviolet, visible light, and mid-wave IR, and maintains relatively stable optical performance under complex usage conditions. It is frequently used in hypersonic missile domes, airborne IR optical windows, optoelectronic mast windows, and high-end civilian optical components. Doped sapphire can be used as an optical component in lasers and thermoluminescence detectors, and sapphire fibers can be used in high-temperature sensors. The basic characteristics of sapphire crystal materials and their research progress in optoelectronic applications are summarized, and future development trends are discussed.

  • [1]
    熊远鹏, 吴波, 温翠莲, 等. 透红外晶体材料的研究现状[J]. 红外, 2012, 33(11): 1-7, 26.

    XIONG Y, WU B, WEN C, et al. Current status of infrared transmission crystal materials[J]. Infrared, 2012, 33(11): 1-7, 26.
    [2]
    余怀之. 红外光学材料(第2版)[M]. 北京: 国防工业出版社, 2015.

    YU H. Infrared Optical Material (Second Edition)[M]. Beijing: National Defense Industry Press, 2015.
    [3]
    YANG G J, PENG Z Y, WANG Y Z, et al. Numerical study of thermal shock on infrared windows and their composites with diamond coatings under harsh conditions[J]. Diamond & Related Materials, 2023, 137: 110117. DOI: 10.1016/J. DIAMOND.2023.110117
    [4]
    李金权, 苏小平, 那木吉拉图, 等. 蓝宝石整流罩的研制现状与发展趋势[J]. 人工晶体学报, 2007, 36(2): 467-474.

    LI J, SU X, NA M, et al. Research trends and current status in producing sapphire domes [J]. Journal of Synthetic Crystals, 2007, 36(2): 467-474.
    [5]
    聂辉, 陆炳哲. 蓝宝石及其在军用光电设备上的应用[J]. 舰船电子工程, 2005, 25(2): 131-133.

    NIE H, LU B. Sapphire window and it's application in military electro–optical equipment [J]. Ship Electronic Engineering, 2005, 25(2): 131-133.
    [6]
    彭志勇, 王向军, 卢进. 近高超声速高温蓝宝石窗口下中波红外成像退化分析仿真与性能测试实验[J]. 物理学报, 2013, 62(23): 230702. doi: 10.7498/aps.62.230702.

    PENG Z, WANG X, LU J. Method of imaging performance deterioration analysis and its experiment simulated high heating sapphire MW infrared window during near–hypersonic flight [J]. Acta Phys. Sin. , 2013, 62(23): 230702. doi: 10.7498/aps.62.230702.
    [7]
    吴绍华, 李常成, 夏丽昆, 等. 蓝宝石晶体材料的光电应用及发展趋势[J]. 云光技术, 2012, 44(2): 1-7.

    WU S, LI C, XIA L, et al. The optoelectronic applications and development trends of sapphire crystal materials[J]. Yunguangjishu, 2012, 44(2): 1-7.
    [8]
    张运强, 潘国庆, 李福巍. 金属网栅电磁屏蔽薄膜在红外空空导弹上的应用研究[J]. 红外技术, 2010, 32(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2010.07.007

    ZHANG Y, PAN G, LI F. Research of metallic mesh in improving electromagnetic shielding of air-to-air missile[J]. Infrared Technology, 2010, 32(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2010.07.007
    [9]
    LIU X Q, ZHANG Y L, LI Q K. et al. Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing[J]. PhotoniX, 2022, 3(1): 00047.
    [10]
    张春雨, 郭兵, 王金虎, 等. 高硬脆保形红外整流罩的加工发展现状[J]. 航空兵器, 2016(6): 73-79.

    ZHANG C, GUO B, WANG J, et al. Current status in machining of super hard and brittle conformal infrared domes[J]. Aero Weaponry, 2016(6): 73-79.
    [11]
    张云, 王淑岩, 孙益善, 等. 超音速状态下整流罩红外窗口的选型问题研究[J]. 红外技术, 1999, 21(2): 11-14. DOI: 10.1109/ISIC.1999.796628

    ZHANG Y, WANG S, SUN Y, et al. Research for selected model problem of dome infrared window under the supersonic condition[J]. Infrared Technology, 1999, 21(2): 11-14. DOI: 10.1109/ISIC.1999.796628
    [12]
    王亚辉, 王强, 张伯川, 等. 高超声速飞行器红外窗口热辐射特性试验[J]. 红外与激光工程, 2015, 44(6): 1716-1720.

    WANG Y, WANG Q, ZHANG B, et al. Evaluation of thermo-radiation characteristics of IR windows in hypersonic vehicles[J]. Infrared and Laser Engineering, 2015, 44(6): 1716-1720.
    [13]
    王亚辉, 王强, 张伯川, 等. 红外窗口气动热辐射效应评估方法[J]. 红外与激光工程, 2016, 45(2): 204001-0204001(6). doi: 10.3788/IRLA201645.0204001.

    WANG Y, WANG Q, ZHANG B, et al. Evaluation method for aero-thermo-radiation effect of IR window[J]. Infrared and Laser Engineering, 2016, 45(2): 204001-0204001(6). doi: 10.3788/IRLA201645.0204001.
    [14]
    李一涵, 胡海洋, 王强. 高超声速飞行器红外探测窗口辐射透射特性研究[J]. 红外与激光工程, 2020, 49(4): 0404002-0404002-7. doi: 10.3788/IRLA202049.0404002.

    LI Y, HU H, WANG Q. Radiative transmission property of infrared window in hypersonic vehicle[J]. Infrared and Laser Engineering, 2020, 49(4): 0404002-0404002-7. doi: 10.3788/IRLA202049.0404002.
    [15]
    潘枝峰, 毛小建, 张红刚, 等. 高超音速中波红外窗口材料思考[J]. 激光与光电子学进展, 2014, 51(9): 153-159.

    PAN Z, MAO X, ZHANG H, et al. Investigation on middle–wave infrared window materials for hypersonic application[J]. Laser & Optoelectronics Progress, 2014, 51(9): 153-159.
    [16]
    谢启明, 李奕威, 潘顺臣. 红外窗口和整流罩材料的发展和应用[J]. 红外技术, 2012, 34(10): 559-567. DOI: 10.3969/j.issn.1001-8891.2012.10.003

    XIE Q, LI Y, PAN S. The development and application of the materials for infrared windows and domes[J]. Infrared Technology, 2012, 34(10): 559-567. DOI: 10.3969/j.issn.1001-8891.2012.10.003
    [17]
    马晓平, 赵良玉. 红外导引头关键技术国内外研究现状综述[J]. 航空兵器, 2018(3): 3-10.

    MA X, ZHAO L. An overview of infrared seeker key technologies at home and abroad[J]. Aero Weaponry, 2018(3): 3-10.
    [18]
    王东海, 侯文涛, 李纳, 等. 导模法生长蓝宝石单晶光纤的缺陷和光学特性研究[J]. 无机材料学报, 2020, 35(9): 1053-1058.

    WANG D, HOU W, LI N, et al. Defects and optical property of single–crystal sapphire fibers grown by edge–defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053-1058.
    [19]
    Locher J, Jones C, Bates H, et al. Characteristics of thick (> 12 mm) class225® EFG™ sapphire sheet for IR window applications[C]// Proceeding of SPIE, 2009, 7302: 730203(1-5).
    [20]
    王东海, 徐军, 李东振, 等. 导模法生长超大尺寸蓝宝石板材的研究[J]. 人工晶体学报, 2020, 49(3): 398.

    WANG D, XU J, LI D, et al. Study on the growth of super large sapphire plate by EFG method [J]. Journal of Synthetic Crystals, 2020, 49(3): 398.
    [21]
    WU M, LIU L, MA W. Control of melt–crystal interface shape during sapphire crystal growth by heat exchanger method[J]. Journal of Crystal Growth, 2017, 474: 31-36.
    [22]
    Miyagawa C, Kobayashi T, Taishi T, et al. Demonstration of crack-free c-axis sapphire crystal growth using the vertical Bridgman method[J]. Journal of Crystal Growth, 2013, 372: 95-99.
    [23]
    康森, 鲁雅荣, 石天虎, 等. 改良泡生法生长720 kg级大尺寸蓝宝石晶体[J]. 人工晶体学报, 2021, 50(8): 1397-1401.

    KANG S, LU Y, SHI T, et al. Growth of 720 kg large-sized sapphire crystal by modified kyropoulos method[J]. Journal of Synthetic Crystals, 2021, 50(8): 1397-1401.
    [24]
    Mogilevsky R, Sharafutdinova L G, MITTL S D. Optical properties of sapphire [C]//Proceeding of SPIE, 2008, 7056: 70560B(1–12).
    [25]
    LEE H C, MEISSNER H E. Characterization of AFB® sapphire single crystal composites for infrared window application[C]//Proceeding of SPIE, 2007, 6545: 1-8.
    [26]
    Colin M F. High temperature transmission measurements of IR window materials[C]//Proceedings of SPIE, 1988, 929: 79-87.
    [27]
    周关关, 于海欧, 郑丽和, 等. 中红外光学材料的高温性能研究[J]. 红外与激光工程, 2012, 41(3): 554-558.

    ZHOU G, YU H, ZHENG L, et al. Optical, mechanical and thermal properties of mid-IR materials under high temperature[J]. Infrared and Laser Engineering, 2012, 41(3): 554-558.
    [28]
    范金太, 许杨阳, 覃显鹏, 等. 常用中波红外窗口材料高温透过与热辐射性能比较[J]. 红外技术, 2017, 39(10): 951-957. http://hwjs.nvir.cn/article/id/hwjs201710014

    FAN J, XU Y, QIN X, et al. Comparative study on transmittance and radiance of sapphire, YAG, spinel, MgF2 and Y2O3 at high temperatures [J]. Infrared Technology, 2017, 39(10): 951-957. http://hwjs.nvir.cn/article/id/hwjs201710014
    [29]
    徐岩, 李彩双, 孙强, 等. 半球蓝宝石整流罩制造技术研究[J]. 光学技术, 2006(4): 636-638.

    XU Y, LI C, SUN Q, et al. Study on manufacturing technology for hemisphere sapphire dome[J]. Optical Technique, 2006(4): 636-638.
    [30]
    黄中华, 冯彦辉, 刘于. 国外机载光电瞄准设备发展[J]. 电光与控制, 2021, 28(10): 61-66.

    HUANG Z, FENG Y, LIU Y. Development of airborne electro-optical targeting systems abroad [J]. Electronics Optics & Control, 2021, 28(10): 61-66.
    [31]
    范志刚, 刘建军, 肖昊苏, 等. 蓝宝石单晶的生长技术及应用研究进展[J]. 硅酸盐学报, 2011, 39(5): 880-891.

    FAN Z, LIU J, XIAO H, et al. Research progress on growth technique and application of sapphire single crystal[J]. Journal of The Chinese Ceramic Society, 2011, 39(5): 880-891.
    [32]
    朱耘. 国外新型光电桅杆的潜艇应用与装备现状[J]. 舰船电子工程, 2022, 42(12): 179-186.

    ZHU Y. Development and application of advanced submarine optronic mast abroad[J]. Ship Electronic Engineering, 2022, 42(12): 179-186.
    [33]
    LIU H, WANG G, JIANG J, et al. Sub-10-fs pulse generation from a blue laser-diode-pumped Ti: sapphire oscillator[J]. Chinese Optics Letters, 2020, 18(7): 071402.
    [34]
    JIANG J, ZHANG X, WANG Z, et al. Power-scalable thin-disk Ti: sapphire laser amplifier[J]. Optics Letters, 2022, 47(21): 5634-5637.
    [35]
    WANG Y, Holguín Lerma J A, Vezzoli M, et al. Photonic-circuit-integrated titanium: sapphire laser[J]. Nature Photonics, 2023(17): 338-345.
    [36]
    唐文奇, 颜丽红, 郑晓彬, 等. 蓝宝石的应用及单晶强韧化研究进展[J]. 功能材料, 2022, 53(5): 5001-5008.

    TANG W, YAN L, ZHENG X, et al. Application of sapphire and research progress of single-crystal strengthening and toughening [J]. Journal of Functional Materials, 2022, 53(5): 5001-5008.
    [37]
    张斌, 张浩佳, 杨秋红, 等. α-Al2O3透明陶瓷的发光及热释光特性[J]. 物理学报, 2010, 59(2): 1333-1337.

    ZHANG B, ZHANG H, YANG Q, et al. The fluorescence and thermoluminescence characteristics of α-Al2O3 transparent ceramics [J]. Acta Phys. Sin. , 2010, 59(2): 1333-1337.
    [38]
    Akselrod M S, Kortov V S, Kravetsky D J, et al. Highly sensitive thermo-luminescent anion–defect α-Al2O3: C single crystal detectors[J]. Radiat Prot Dosim, 1990, 32(1-4): 119-122.
    [39]
    Markey B G, Colyott L E, Mckeever S W S. Time–resolved optically stimulated luminescence from α-Al2O3: C[J]. Radiat Meas, 1995, 24(4): 457-463.
    [40]
    杨新波, 李红军, 徐军, 等. 导模法和温度梯度法生长R面蓝宝石[J]. 硅酸盐学报, 2008, 36(5): 678-682.

    YANG X, LI H, XU J, et al. Growth of R–plane Sapphire by edge–defined film–fed growth and temperature gradient technique[J]. Journal of the Chinese Ceramic Society, 2008, 36(5): 678-682.
    [41]
    杨新波, 李红军, 徐军, 等. α-Al2O3: C晶体的热释光和光释光特性[J]. 物理学报, 2008, 57(12): 7900-7906.

    YANG X, LI H, XU J, et al. Thermoluminescene and optically stimulated luminescene characteristics of α-Al2O3: C crystal[J]. Acta Phys. Sin. , 2008, 57(12): 7900-7906.
    [42]
    庞拂飞, 王之凤, 刘奂奂, 等. 蓝宝石光纤及其高温传感器[J]. 光子学报, 2019, 48(11): 47-58.

    PANG F, WANG Z, LIU H, et al. Sapphire optical fiber and its high temperature sensor [J]. Acta Photonica Sinica, 2019, 48(11): 47-58.
    [43]
    Tran T B, Alqatari F, Luc Q H. Nanophotonic crystals on unpolished sapphire substrates for deep-UV light-emitting diodes[J]. Scientific Reports, 2021, 11(1): 4981.
    [44]
    何俊, 徐锡镇, 贺佳, 等. 蓝宝石光纤光栅高温传感器研究进展与发展趋势(特邀)[J]. 红外与激光工程, 2022, 51(10): 20220700.

    HE J, XU X, HE J, et al. Research progress and development tendency of sapphire fiber Bragg grating-based high-temperature sensors(invited) [J]. Infrared and Laser Engineering, 2022, 51(10): 20220700.
    [45]
    WANG B, NIU Y, ZHENG S, et al. A high temperature sensor based on sapphire fiber fabry-perot interferometer[J]. IEEE Photonics Technology Letters, 2019, 32(2): 89-92.
    [46]
    ZHANG P H, ZHANG L, WANG Z Y. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures[J]. Optics Express, 2019, 27(19): 27112-27123.
    [47]
    DING H, DAN G, Hnatovsky C. Sapphire fiber Bragg grating coupled with graded-index fiber lens[C]//Quebec City: Institute of Electrical and Electronics Engineers, 2019: 21-23.
    [48]
    GUO Q, YU Y S, ZHENG Z M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211.
    [49]
    沈永行. 从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器[J]. 光学学报, 2000, 20(1): 83-87.

    SHEN Y. Sapphire fiber thermometer ranging from the room temperature to 1800℃[J]. Acta Optica Snica, 2000, 20(1): 83-87.
    [50]
    徐乃英. 高温传输和传感器用的蓝宝石光纤[J]. 光纤与电缆及其应用技术, 2005(2): 13-16.

    XU N. Sapphire optical waveguides for high temperature transmission and sensors applications [J]. Optical Fiber & Electric Cable, 2005(2): 13-16.
    [51]
    江毅, 张雨彤, 邓辉. 飞秒激光微加工蓝宝石晶片光纤压力传感器[J]. 光学学报, 2023, 43(15): 1506001.

    JIANG Y, ZHANG Y, DENG H. Optical fiber pressure sensor based on sapphire wafers processed by femtosecond laser [J]. Acta Optica Sinica, 2023, 43(15): 1506001.
    [52]
    Sundaresan A, Nie J C, Hirai M, et al. Growth of TlBa2Ca2·Cu3Oy superconducting thin film on CeO2 buffered sapphire substrate [J]. Physica C, 2002, 378(2): 1283-1286.
    [53]
    YOU Feng, WANG Zheng, XIE Qinglian, et al. Fabrication and properties of double-side Tl2Ba2CaCu2O8 thin film on CeO2 buffered sapphire substrate[J]. Chin Phys Lett, 2010, 27(4): 047401-047403.
    [54]
    Virt I S, Bester M, Dumanski L, et al. Properties of HgCdTe films obtained by laser deposition on a sapphire [J]. Appl Surf Sci, 2001, 177(3): 201-206.
    [55]
    Kotelyanskii M I, Kotelyanskii I M, Kravchenko V B. New buffer sublayers for heteroepitaxial Ⅲ-Ⅴ nitride films on sapphire substrates[J]. Tech. Phys. Lett. , 2000, 26(2): 163-164.
    [56]
    Yoshimoto M, Yoshida K, Maruta H, et al. Epitaxial diamond growth on sapphire in an oxidizing environment [J]. Nature, 1999, 399: 340-342.
    [57]
    CHUNG G S. Thin SOI structures for sensing and integrated circuit applications[J]. Sens Actuators A, Phys, 1993, 39(3): 241-251.
    [58]
    Jeong S M, Kissinger S, Kim D W, et al. Characteristic enhancement of the blue LED chip by the growth and fabrication on patterned sapphire (0001) substrate[J]. J. Cryst Growth, 2010, 312(2): 258-262.
    [59]
    孙长征, 郑焱真, 熊兵, 等. 基于宽禁带氮化物的微腔光频梳进展[J]. 红外与激光工程, 2022, 51(5): 20220270.

    SUN C, ZHENG Y, XIONG B, et al. Advances in Ⅲ-nitride-based microresonator optical frequency combs[J]. Infrared and Laser Engineering, 2022, 51(5): 20220270.
    [60]
    MA D, XU S, TAO H, et al. Investigation of nitridation time on the quality of AlGaN/GaN heterojunction grown on AlN-sputtered sapphire substrate[J]. Materials Letters, 2020, 277: 128395.
    [61]
    Aggarwal V, Ramesh C, Tyagi P, et al. Controlled epitaxial growth of GaN nanostructures on sapphire (11-20) using laser molecular beam epitaxy for photodetector applications[J]. Materials Science in Semiconductor Processing, 2021, 125: 105631.
    [62]
    ZHU Y, LIU X, GE M, et al. Demonstration of GaN-based white LED grown on 4-inch patterned sapphire substrate by MOCVD[J]. Optical Materials, 2021, 112: 110811.
    [63]
    Azman A, Kamarundzaman A, Bakar A, et al. The optimization of n-type and p-type m-plane GaN grown on m-plane sapphire substrate by metal organic chemical vapor deposition[J]. Materials Science in Semiconductor Processing, 2021, 131(5726): 105836.
    [64]
    陈晨, 乔铁柱, 庞宇松, 等. 基于视觉辐条图案识别方法的蓝宝石引晶机制研究[J]. 人工晶体学报, 2022, 51(2): 256.

    CHEN C, QIAO T, PANG Y, et al. Sapphire seeding mechanism based on visual spoke pattern recognition method [J]. Journal of Synthetic Crystals, 2022, 51(2): 256.
    [65]
    Fedotov S D, Statsenko V N, Egorov N N, et al. Effect of solid-state epitaxial recrystallization on defect density in ultrathin silicon-on-sapphire layers[J]. Physics of the Solid State, 2019, 61(12): 2353-2358.
    [66]
    GUO Z, CHAO L, WANG Y, et al. Design and experimental research of a temperature compensation system for silicon-on-sapphire pressure sensors[J]. IEEE Sensors Journal, 2017, 17(3): 709-715.

Catalog

    Article views (77) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return