YAN Lei, SHI Feng, CHENG Hongchang, JIAO Gangcheng, YANG Ye, XIAO Chao, FAN Haibo, ZHEN Zhou, DONG Haichen, HE Huiyang. Dark Current of Aluminum Oxide Passivation Film BCMOS Sensor Increased by Low Energy Electron Bombardment[J]. Infrared Technology , 2024, 46(3): 342-346.
Citation: YAN Lei, SHI Feng, CHENG Hongchang, JIAO Gangcheng, YANG Ye, XIAO Chao, FAN Haibo, ZHEN Zhou, DONG Haichen, HE Huiyang. Dark Current of Aluminum Oxide Passivation Film BCMOS Sensor Increased by Low Energy Electron Bombardment[J]. Infrared Technology , 2024, 46(3): 342-346.

Dark Current of Aluminum Oxide Passivation Film BCMOS Sensor Increased by Low Energy Electron Bombardment

More Information
  • Received Date: May 05, 2022
  • Revised Date: June 28, 2022
  • This study designed a buried channel metal-oxide-semiconductor (BCMOS) image sensor experiment to address increased dark current caused by low-energy electron bombardment (300 eV to 1500 eV) on the alumina passivation layer. For a CMOS image sensor with a 10 nm alumina passivation layer, an increase in the dark current rate is obvious when the bombardment energy is greater than 600 eV. When the bombardment electron energy does not exceed 1.5 keV, the dark current has a maximum value of about 12000 e-/pixel/s. Finally, after electron bombardment, the dark current of the CMOS image sensor decreased exponentially when the sensor was placed in an electronic drying cabinet. The main reason for the above phenomenon is the increased defect states at the interface between alumina passivation layer and silicon caused by incident electrons.
  • [1]
    Mackay C D, Tubbs R N, Bell R, et al. Sub-electron readnoise at MHz pixel rates (A)[C]//Proceedings of SPIE, 2001, 4306: 289-298
    [2]
    辛福学. ICCD的光纤耦合技术[J]. 红外与激光工程, 2001, 30(3): 210-213. DOI: 10.3969/j.issn.1007-2276.2001.03.014

    XIN Fuxue. Optical fiber coupling technique of ICCD[J]. Infrared and Laser Engineering, 2001, 30(3): 210-213. DOI: 10.3969/j.issn.1007-2276.2001.03.014
    [3]
    Benussi L, Fanti V, Frekers D, et al. A multichannel single-photon sensitive detector for high-energy physics: themegapixel EBCCD[J]. Nuclear Instruments and Methods in Physics Research A, 2000(442): 154-158.
    [4]
    宋德, 石峰, 李野. 基底均匀掺杂下EBAPS电荷收集效率的模拟研究[J]. 红外与激光工程, 2016, 45(2): 0203002. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201602008.htm

    SONG De, SHI Feng, LI Ye. Simulation of charge collection efficiency for EBAPS with uniformly doped substrate[J]. Infrared and Laser Engineering, 2016, 45(2): 0203002. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201602008.htm
    [5]
    刘亚宁, 桑鹏, 吕嘉玮, 等. 微型低功耗EBAPS相机技术[J]. 红外技术, 2019, 41(9): 810-818. http://hwjs.nvir.cn/article/id/hwjs201909003

    LIU Yaning, SANG Peng, LYU Jiawei, et al. Miniature low power consumption EBAPS camera technology[J]. Infrared Technology, 2019, 41(9): 810-818. http://hwjs.nvir.cn/article/id/hwjs201909003
    [6]
    刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报, 2018, 67(1): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201801017.htm

    LIU Hulin, WANG Xing, TIAN Jinshou, et al. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection[J]. Acta Physica Sinica, 2018, 67(1): 152-157. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201801017.htm
    [7]
    徐鹏霄, 唐光华, 唐家业, 等. EBCMOS混合型光电探测器研究[J]. 光电子技术, 2016, 36(4): 232-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS201604004.htm

    XU Pengxiao, TANG Guanghua, TANG Jiaye, et al. Review of EBCMOS Hybrid Photodetector[J]. Optoelectronic Technology, 2016, 36(4): 232-252. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS201604004.htm
    [8]
    Barbier R, Cajgfinger T, Calabria P, et al. A single-photonsensitive EBCMOS camera: The LUSIPHER prototype [J]. Nuclear Instruments and Methods in Physics Research A, 2011, 648(1): 266-274. DOI: 10.1016/j.nima.2011.04.018
    [9]
    王生凯, 靳川, 乔凯, 等. 热处理对背照式CMOS传感器信噪比影响的实验研究[J]. 红外技术, 2016, 41(6): 585-590. http://hwjs.nvir.cn/article/id/hwjs201906015

    WANG Shengkai, JIN Chuan, QIAO Kai, et al. Impact of annealing temperature on SNR in backside illuminated CMOS[J]. Infrared Technology, 2016, 41(6): 585-590. http://hwjs.nvir.cn/article/id/hwjs201906015
    [10]
    乔凯, 王生凯, 程宏昌, 等. 表面钝化膜对BCMOS传感器电子敏感特性影响的实验研究[J]. 红外与激光工程, 2020, 49(4): 0418002. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202004033.htm

    QIAO Kai, WANG Shengkai, CHENG Hongchang, et al. Experimental study on the electron sensitivity of BCMOS sensor influenced by surface passivation film[J]. Infrared and Laser Engineering, 2020, 49(4): 0418002. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202004033.htm
    [11]
    Nathan Eric Howard. Development of Techniques to Characterize Electron-bombarded Charge-coupled Devices[D]. Tucson: The University of Arizona, 2002.
    [12]
    Hundur Yakup, Guvenc Ziya B, Hippler Rainer. Dynamical analysis of sputtering at threshold energy range: modelling of Ar+Ni(100) collision system[J]. Chin. Phys. Lett., 2008, 25(2): 730-733. DOI: 10.1088/0256-307X/25/2/102
    [13]
    刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 北京: 电子工业出版社, 2011.

    LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. Beijing: Electronics Industry Press, 2011.
  • Related Articles

    [1]GONG Xiaoxia, XIAO Tingting, YANG Ruiyu, LI Bingzhe, SHANG Falan, SUN Xiangle, ZHAO Yupeng, CHEN Dongqiong, YANG Wenyun. Influence of Different Passivation Films on the Performance of InSb Photovoltaic Detector[J]. Infrared Technology , 2020, 42(10): 953-957.
    [2]GONG Yanni, YANG Wenyun, YANG Shaopei, FAN Mingguo, CHU Zhujun. Study on the ICPCVD Technology of Silicon Nitride Passivation Films for InP/InGaAs Detectors[J]. Infrared Technology , 2019, 41(6): 511-514.
    [3]LIN Zhanwen, HAN Fuzhong, LI Xiongjun, GENG Song, SHI Qi, HU Yanbo, YANG Chaowei, LIN Yang. Study on the Influence of CdTe Passivation Film Sputtering Power on HgCdTe Device Performance[J]. Infrared Technology , 2018, 40(8): 733-738.
    [4]LI Xiong-jun, HAN Fu-zhong, LI Dong-sheng, LI Li-hua, HU Yan-bo, KONG Jin-cheng, ZHU Ying-feng, ZHUANG Ji-sheng, JI Rong-bin. A Study of Interface Electrical Characteristics for MW HgCdTe/Passivation Layer[J]. Infrared Technology , 2015, (10): 868-872.
    [5]HAN Fu-zhong, GENG Song, Shi Qi, YUAN Shou-zhang, YANG Wei-sheng, JIANG Jun, TANG Jin-chun. Passivation Technology of Composite Film on the HgCdTe IRFPA[J]. Infrared Technology , 2015, (10): 864-867.
    [6]ZHANG Yang, HUANG Yong-gang, LIU Hui, LI Guo-en. Progress in Anodic Aluminum Oxide Microchannel Plates[J]. Infrared Technology , 2012, 34(7): 427-432. DOI: 10.3969/j.issn.1001-8891.2012.07.010
    [7]LIU Li-ming, MO Jing-hui, SHI Yan-li, ZENG Hua-rong, YANG Pei-zhi. Structure and Property Study on Vanadium Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering Technique[J]. Infrared Technology , 2012, 34(5): 260-264. DOI: 10.3969/j.issn.1001-8891.2012.05.003
    [8]SONG Li-yuan, TANG Li-bin, JI Rong-bin, LIU Xin-jin, CHEN Xue-mei, XUE Jing-wei, ZHUANG Ji-sheng, WANG Chong, YANG Yu. Properties of Intrinsic and Aluminum-doped ZnO Thin Films[J]. Infrared Technology , 2012, 34(5): 256-259. DOI: 10.3969/j.issn.1001-8891.2012.05.002
    [9]LI Wen-mu, CHEN Xiang-dong, DUAN Xiao-feng. Equivalent Model for Vanadium Oxide Thin Film Uncooled IR Detector[J]. Infrared Technology , 2006, 28(3): 134-138. DOI: 10.3969/j.issn.1001-8891.2006.03.003
    [10]Study of Photochemical Oxidation of n-type Mercury Cadmium Tellurium Photoconductance Detectors[J]. Infrared Technology , 2001, 23(2): 13-16. DOI: 10.3969/j.issn.1001-8891.2001.02.005
  • Cited by

    Periodical cited type(4)

    1. 龙虎,张泓筠. 大数据量红外图像非均匀性校正仿真研究. 计算机仿真. 2019(01): 205-208 .
    2. 刘亚梅. 基于相邻像素统计一致性的非均匀性校正方法. 光子学报. 2018(07): 36-44 .
    3. 周应宝. 乒乓球运动员发球姿势三维图像校正仿真. 计算机仿真. 2017(11): 253-256+359 .
    4. 李赓飞,李桂菊,韩广良,刘培勋,江山. 红外成像系统的非均匀性实时校正. 光学精密工程. 2016(11): 2841-2847 .

    Other cited types(6)

Catalog

    Article views (111) PDF downloads (38) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return