Citation: | MA Luyao, LUO Xiaoqing, ZHANG Zhancheng. Infrared and Visible Image Fusion Based on Information Bottleneck Siamese Autoencoder Network[J]. Infrared Technology , 2024, 46(3): 314-324. |
[1] |
张冬冬, 王春平, 付强. 深度学习框架下的红外与可见光图像融合算法综述[J]. 激光与红外, 2022, 52(9): 1288-1298. DOI: 10.3969/j.issn.1001-5078.2022.09.004
ZHANG D D, WANG C P, FU Q. Overview of infrared and visible image fusion algorithms based on deep learning framework[J]. Laser & Infrared, 2022, 52(9): 1288-1298. DOI: 10.3969/j.issn.1001-5078.2022.09.004
|
[2] |
MA J, MA Y, LI C. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. DOI: 10.1016/j.inffus.2018.02.004
|
[3] |
陈永, 张娇娇, 王镇. 多尺度密集连接注意力的红外与可见光图像融合[J]. 光学精密工程, 2022, 30(18): 2253-2266.
CHEN Y, ZHANG J J, WANG Z. Infrared and visible image fusion based on multi-scale dense attention connection network[J]. Optics and Precision Engineering, 2022, 30(18): 2253-2266.
|
[4] |
孙彬, 诸葛吴为, 高云翔, 等. 基于潜在低秩表示的红外和可见光图像融合[J]. 红外技术, 2022, 44(8): 853-862. http://hwjs.nvir.cn/article/id/7fc3a60d-61bb-454f-ad00-e925eeb54576
SUN B, ZHUGE W W, GAO Y X, et al. Infrared and visible lmage fusion based on latent low-rank representation[J]. Infrared Technology, 2022, 44(8): 853-862. http://hwjs.nvir.cn/article/id/7fc3a60d-61bb-454f-ad00-e925eeb54576
|
[5] |
杨孙运, 奚峥皓, 王汉东, 等. 基于NSCT和最小化-局部平均梯度的图像融合[J]. 红外技术, 2021, 43(1): 13-20. http://hwjs.nvir.cn/article/id/144252d1-978c-4c1e-85ad-e0b8d5e03bf6
YANG S Y, XI Z H, WANG H D, et al. Image fusion based on NSCT and minimum-local mean gradient [J]. Infrared Technology, 2021, 43(1): 13-20. http://hwjs.nvir.cn/article/id/144252d1-978c-4c1e-85ad-e0b8d5e03bf6
|
[6] |
刘智嘉, 贾鹏, 夏寅辉. 基于红外与可见光图像融合技术发展与性能评价[J]. 激光与红外, 2019, 49(5): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201905022.htm
LIU Z J, JIA P, XIA Y H, et al. Development and performance evaluation of infrared and visual image fusion technology[J]. Laser & Infrared, 2019, 49(5): 123-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201905022.htm
|
[7] |
Lee H Y, Tseng H Y, Mao Q, et al. Drit++: Diverse image-to-image translation via disentangled representations[J]. International Journal of Computer Vision, 2020, 128(10): 2402-2417.
|
[8] |
马梁, 苟于涛, 雷涛, 等. 基于多尺度特征融合的遥感图像小目标检测[J]. 光电工程, 2022, 49(4): 49-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202204005.htm
MA L, GOU Y T, LEI T, et al. Small object detection based on multi-scale feature fusion using remote sensing images[J]. Opto-Electronic Engineering, 2022, 49(4): 49-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202204005.htm
|
[9] |
雷大江, 杜加浩, 张莉萍, 等. 联合多流融合和多尺度学习的卷积神经网络遥感图像融合方法[J]. 电子与信息学报, 2022, 44(1): 237-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202201025.htm
LEI D J, DU J H, ZHANG L P, et al. Multi-stream architecture and multi-scale convolutional neural network for remote sensing image fusion[J]. Journal of Electronics & Information Technology, 2022, 44(1): 237-244. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202201025.htm
|
[10] |
李明, 刘帆, 李婧芝. 结合卷积注意模块与卷积自编码器的细节注入遥感图像融合[J]. 光子学报, 2022, 51(6): 406-418. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202206038.htm
LI M, LIU F, LI J Z. Combining convolutional attention module and convolutional autoencoder for detail injection remote sensing image fusion[J]. Acta Photonica Sinica, 2022, 51(6): 406-418. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202206038.htm
|
[11] |
刘博, 韩广良, 罗惠元. 基于多尺度细节的孪生卷积神经网络图像融合算法[J]. 液晶与显示, 2021, 36(9): 1283-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS202109009.htm
LIU B, HAN G L, LUO H Y. Image fusion algorithm based on multi-scale detail siamese convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1283-1293. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS202109009.htm
|
[12] |
Krishna V A, Reddy A A, Nagajyothi D. Signature recognition using siamese neural networks[C]//IEEE International Conference on Mobile Networks and Wireless Communications (ICMNWC), 2021: 1-4.
|
[13] |
LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
|
[14] |
LI H, WU X J, Durrani T. NestFuse: An infrared and visible image fusion architecture based on nest connection and spatial/channel attention models[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9645-9656. DOI: 10.1109/TIM.2020.3005230
|
[15] |
LU B, CHEN J C, Chellappa R. Unsupervised domain-specific deblurring via disentangled representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10225-10234.
|
[16] |
WANG G, HAN H, SHAN S, et al. Cross-domain face presentation attack detection via multi-domain disentangled representation learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 6678-6687.
|
[17] |
文载道, 王佳蕊, 王小旭, 等. 解耦表征学习综述[J]. 自动化学报, 2022, 48(2): 351-374. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202202003.htm
WEN Z D, WANG J R, WANG X X, et al. A review of disentangled representation learning[J]. Acta Automatica Sinica, 2022, 48(2): 351-374. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202202003.htm
|
[18] |
ZHAO Z, XU S, ZHANG C, et al. DIDFuse: Deep image decomposition for infrared and visible image fusion[J]. arXiv preprint arXiv: 2003.09210, 2020.
|
[19] |
XU H, WANG X, MA J. DRF: Disentangled representation for visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13.
|
[20] |
XU H, GONG M, TIAN X, et al. CUFD: An encoder–decoder network for visible and infrared image fusion based on common and unique feature decomposition[J]. Computer Vision and Image Understanding, 2022, 218: 103407. DOI: 10.1016/j.cviu.2022.103407
|
[21] |
Tishby N, Pereira F C, Bialek W. The information bottleneck method[J]. arXiv preprint physics/0004057, 2000.
|
[22] |
Tishby N, Zaslavsky N. Deep learning and the information bottleneck principle[C]// IEEE Information Theory Workshop (ITW). IEEE, 2015: 1-5.
|
[23] |
Shwartz-Ziv R, Tishby N. Opening the black box of deep neural networks via information[J]. arXiv preprint arXiv: 1703.00810, 2017.
|
[24] |
Alemi A A, Fischer I, Dillon J V, et al. Deep variational information bottleneck[J]. arXiv preprint arXiv: 1612.00410, 2016.
|
[25] |
Tishby N, Zaslavsky N. Deep learning and the information bottleneck principle[C]//IEEE Information Theory Workshop (ITW). IEEE, 2015: 1-5.
|
[26] |
ZHANG Y, LIU Y, SUN P, et al. IFCNN: A general image fusion framework based on convolutional neural network[J]. Information Fusion, 2020, 54: 99-118. DOI: 10.1016/j.inffus.2019.07.011
|
[27] |
MA J, CHEN C, LI C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion, 2016, 31: 100-109. DOI: 10.1016/j.inffus.2016.02.001
|
[28] |
ZHANG H, MA J. SDNet: A versatile squeeze-and-decomposition network for real-time image fusion[J]. International Journal of Computer Vision, 2021, 129(10): 2761-2785. DOI: 10.1007/s11263-021-01501-8
|
[29] |
LIU Y, LIU S, WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. DOI: 10.1016/j.inffus.2014.09.004
|