Citation: | FENG Rui, YUAN Hongwu, ZHOU Yuye, WANG Feng. Fusion Method for Polarization Direction Image Based on Double-branch Antagonism Network[J]. Infrared Technology , 2024, 46(3): 288-294. |
[1] |
周强国, 黄志明, 周炜, 等. 偏振成像技术的研究进展及应用[J]. 红外技术, 2021, 43(9): 817-828. http://hwjs.nvir.cn/article/id/76230e4e-2d34-4b1e-be97-88c5023050c6
ZHOU Qiangguo, HUANG Zhiming, ZHOU Wei, et al. Research progress and application of polarization imaging technology[J]. Infrared Technology, 2021, 43(9): 817-828. http://hwjs.nvir.cn/article/id/76230e4e-2d34-4b1e-be97-88c5023050c6
|
[2] |
HU H, ZHANG Y, LI X, et al. Polarimetric underwater image recovery via deep learning[J]. Optics and Lasers in Engineering, 2020, 133: 106152. DOI: 10.1016/j.optlaseng.2020.106152
|
[3] |
WEI Y, HAN P, LIU F, et al. Enhancement of underwater vision by fully exploiting the polarization information from the Stokes vector[J]. Optics Express, 2021, 29(14): 22275-22287. DOI: 10.1364/OE.433072
|
[4] |
DING X, WANG Y, FU X. Multi-polarization fusion generative adversarial networks for clear underwater imaging [J]. Optics and Lasers in Engineering, 2022, 152: 106971. DOI: 10.1016/j.optlaseng.2022.106971
|
[5] |
寻华生, 张晶晶, 刘晓, 等. 基于偏振图像的低照度场景多目标检测算法[J]. 红外技术, 2022, 44(5): 483-491. http://hwjs.nvir.cn/article/id/dfa63fae-27cf-42e6-96a3-5cfb8160c0a6
XUN Huasheng, ZHANG Jingjing, LIU Xiao, et al. Multi-object detection algorithm for low-illumination scene based on polarized image[J]. Infrared Technology, 2022, 44(5): 483-491. http://hwjs.nvir.cn/article/id/dfa63fae-27cf-42e6-96a3-5cfb8160c0a6
|
[6] |
SHEN J, WANG H, CHEN Z, et al. Polarization calculation and underwater target detection inspired by biological visual imaging[J]. Sensors & Transducers, 2014, 169(4): 33.
|
[7] |
Otter D W, Medina J R, Kalita J K. A survey of the usages of deep learning for natural language processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(2): 604-624.
|
[8] |
Nassif A B, Shahin I, Attili I, et al. Speech recognition using deep neural networks: A systematic review[J]. IEEE Access, 2019, 7: 19143-19165. DOI: 10.1109/ACCESS.2019.2896880
|
[9] |
JIAO L, ZHAO J. A survey on the new generation of deep learning in image processing[J]. IEEE Access, 2019, 7: 172231-172263. DOI: 10.1109/ACCESS.2019.2956508
|
[10] |
LI H, WUX J. DenseFuse: A fusion approach to infrared and visible images [J]. IEEE Transactions on Image Processing, 2018, 28(5): 2614-2623.
|
[11] |
王霞, 赵家碧, 孙晶, 等. 偏振图像融合技术综述[J]. 航天返回与遥感, 2021, 42(6): 9-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202106003.htm
WANG Xia, ZHAO Jiabi, SUN Jing, et al. A review of polarized image fusion techniques[J]. Space Return and Remote Sensing, 2021, 42(6): 9-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202106003.htm
|
[12] |
Tyo J S, Rowe M P, Pugh E N, et al. Target detection in optically scattering media by polarization-difference imaging[J]. Applied Optics, 1996, 35(11): 1855-1870. DOI: 10.1364/AO.35.001855
|
[13] |
HUANG G, LIU Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[14] |
SHEN Yu, WU Zhongdong, WANG Xiaopeng, et al. Tetrolet transform images fusion algorithm based on fuzzy operator[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1132-1138.
|
[15] |
Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on communications, 1995, 43(12): 2959–2965. DOI: 10.1109/26.477498
|
[16] |
Roberts J W, Aardt J A van, Ahmed F B. Assessment of image fusion procedures using entropy, image quality, and multispectral classification[J]. Journal of Applied Remote Sensing, 2008, 2(1): 023522.
|
[17] |
JIN Xin, NIE Rencan, ZHOU Dongming, et al. Multifocus color image fusion based on NSST and PCNN[J/OL]. Journal of Sensors, 2016, https://doi.org/10.1155/2016/8359602.
|
1. |
白龙温,贾铭. 一种USB接口的非制冷红外机芯设计. 承德石油高等专科学校学报. 2022(03): 41-46 .
![]() |