LIU Fengge, SU Tianning, LIU Beihong, CHENG Shuai, ZHU Rongsheng, JI Ming, XIAO Jie, ZHAO Hang, ZHANG Lisong, CHANG Le. Flicker Noise Testing Based on a Discrete Coefficient and Harris Corner Point Detection for a Low-light Image Intensifier[J]. Infrared Technology , 2024, 46(10): 1154-1161.
Citation: LIU Fengge, SU Tianning, LIU Beihong, CHENG Shuai, ZHU Rongsheng, JI Ming, XIAO Jie, ZHAO Hang, ZHANG Lisong, CHANG Le. Flicker Noise Testing Based on a Discrete Coefficient and Harris Corner Point Detection for a Low-light Image Intensifier[J]. Infrared Technology , 2024, 46(10): 1154-1161.

Flicker Noise Testing Based on a Discrete Coefficient and Harris Corner Point Detection for a Low-light Image Intensifier

More Information
  • Received Date: September 30, 2023
  • Revised Date: October 24, 2023
  • To compensate for the insufficient signal-to-noise ratio, which cannot be accurately localized in two-dimensional space to analyze the flicker noise characteristics of an image intensifier, this study designs a low-light image intensifier flicker noise test method based on a discrete coefficient and Harris corner point detection for the image intensifier flicker noise characteristics. In this method, a high-frame-rate image acquisition system based on a Gsense400BSI CMOS image sensor was used to realize flicker noise image acquisition that matched the afterglow time of the fluorescent screen of the image intensifier. By calculating the pixel-level discrete coefficients of the images acquired from consecutive multiframes, a hotspot map was visualized. In addition, the Harris corner detection algorithm was used to accurately analyze the flicker noise in each region of the fluorescent screen of the image intensifier and mark the bright noise spots on the fluorescent screen. The experimental results show that this method can realize the two-dimensional analysis and localization of the flicker noise of the image intensifier and thus provide technical support for the performance optimization of the image intensifier and testing of noise characteristics.

  • [1]
    郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003

    GUO H, XIANG S, TIAN M. A review of the development of low-light night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003
    [2]
    白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2013: 245-251.

    BAI T, JIN W. Principle and Technology of Photoelectronic Imaging[M]. Beijing: Beijing Institute of Technology Press, 2013: 245-251.
    [3]
    李廷涛, 龚燕妮, 曾进能, 等. 超二代像增强器分辨力提高方法[J]. 红外技术, 2023, 45(4): 335-341. http://hwjs.nvir.cn/article/id/c45178e3-08f1-4438-af3b-e722087aa366

    LI T, GONG Y, ZENG J, et al. Methods for resolution improvement of super Ⅱ image intensifier[J]. Infrared Technology, 2023, 45(4): 335-341. http://hwjs.nvir.cn/article/id/c45178e3-08f1-4438-af3b-e722087aa366
    [4]
    孙默涵, 钱芸生, 任莹楠, 等. 基于自动亮度控制模型的门控微光像增强器荧光屏亮度研究[J]. 光子学报, 2022, 51(3): 0304004.

    SUN M, QIAN Y, REN Y, et al. Brightness of the screen of gated low light level image intensifier based on automatic brightness control model[J]. Acta Photonica Sinca, 2022, 51(3): 0304004.
    [5]
    姚泽, 程宏昌, 李涛, 等. 基于P31荧光粉的像增强器余辉测量方法研究[J]. 应用光学, 2020, 41(4): 796-800.

    YAO Z, CHEN H, LI T, et al. Research on afterglow measurement method of image intensifier based on P31 phosphor powder[J]. Journal of Applied Optics, 2020, 41(4): 796-800.
    [6]
    李晓峰, 杜木林, 徐传平, 等. 影响超二代像增强器最高增益的因数分析[J]. 光子学报, 2022, 51(3): 1-12.

    LI X, DU M, XV C, et al. Analysis on factors affecting the maximum gain of super second generation image intensifier[J]. Acta Photonica Sinca, 2022, 51(3): 1-12.
    [7]
    金伟其, 张琴, 王霞等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报, 2020, 49(4): 0411001.

    JIN W, ZHANG Q, WANG X, et al. An improved apparent distance model for direct-view low-light-level night vision system[J]. Acta Photonica Sinca, 2020, 49(4): 0411001.
    [8]
    潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001

    PAN J. Image intensifier upgraded performance and evaluation standard[J]. Intrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
    [9]
    王洪刚. 像增强器的电子运输与噪声特性研究[D]. 南京: 南京理工大学, 2015.

    WANG H. Research on the Electron Transport and Noise Characteristics of Image Intensifiers[D]. Nanjing: Nanjing University of Science & Technology, 2015.
    [10]
    向世明. 微光像增强器信噪比理论极限问题研究[J]. 应用光学, 2008, 34(5): 724-726.

    XIANG S. Theoretical limit for SNR of LLL image intensifiers[J]. Journal of Applied Optics, 2008, 34(5): 724-726.
    [11]
    杨敏杰, 钱芸生, 严毅赟, 等. 基于CMOS图像传感器的像增强器闪烁噪声测试系统[J]. 激光与光电子学进展, 2021, 60(2): 316-321.

    YANG M, QIAN Y, YAN Y, et al. Scintillation noise test system of image intensifier based on CMOS image sensor[J]. Laser & Optoelectronics Progress, 2021, 60(2): 316-321.
    [12]
    卢杰, 常乐, 陈益新, 等. 微光像增强器纳秒级荧光屏余晖时间测试系统[J]. 应用光学, 2022, 43(6): 1130-1137.

    LU J, CHANG L, CHEN Y, et al. Development of afterglow time test system for nanosecond fluorescent screen of low-level-light image intensifier[J]. Journal of Applied Optics, 2022, 43(6): 1130-1137.
    [13]
    丁姝晨, 钱芸生, 林焱剑, 等. 基于光晕的微通道板黑点检测方法[J]. 应用光学, 2022, 43(6): 1145-1152.

    DING S, QIAN Y, LIN Y, et al. Halo-based black point detection method of microchannel plate[J]. Journal of Applied Optics, 2022, 43(6): 1145-1152.
    [14]
    丁雄飞, 张春燕. 基于Moravec算子和改进的SIFT算法的图像匹配[J]. 合肥学院学报(自然科学版), 2013, 2(3): 40-42.

    DING X, ZHANG C. Moravec operator and improvements of the SIFT algorithm-based image matching[J]. Journal of Hefei University (Natural Sciences), 2013, 2(3): 40-42.
    [15]
    高翔, 万成浩, 李润生. 一种基于Harris-Laplace算法的亚像素角点检测方法[J]. 测绘科学技术学报, 2017, 34(5): 475-480.

    GAO X, WAN C, LI R. A sub-pixel corner detection method based on harris-Laplace algorithm[J]. Journal of Geomatics Science and Technology, 2017, 34(5): 475-480.
  • Related Articles

    [1]LUO Zhenhua, CHENG Shuai, QIAN Yunsheng, ZHANG Yijun. Flicker Noise Testing System of Electron Bombarded Active Pixel Sensor[J]. Infrared Technology , 2024, 46(10): 1130-1137.
    [2]LI Dan, ZHU Yufeng, ZHAO Huimin, ZHANG Ni, ZHANG Taimin, LI Xiangxin, HAO Ziheng, HUANG Wujun, CHEN Chang. Research on Noise Factor Characteristic of Micro-channel Plate[J]. Infrared Technology , 2017, 39(11): 1066-1070.
    [3]XIANG Yingjie, ZHANG Jianfeng, YANG Guang, WANG Qi. A Mixed-Noise Estimation-Based Anomaly Detection Method for Hyperspectral Image[J]. Infrared Technology , 2017, 39(8): 734-739.
    [4]WANG Desheng, WU Zhongjian, YAO Xiujuan, JIN Daizhong, LU Hongchao. Method for Detecting Image Corners Using Adaptive Determining Tracking Template[J]. Infrared Technology , 2017, 39(7): 638-641.
    [5]WANG Qiang, ZHANG Hexin, MENG Fei, XIONG Peng. A Novel Fuzzy Filter for Speckle Noise Removal[J]. Infrared Technology , 2016, 38(5): 415-421.
    [6]MAO Chen, QIAN Wei-xian, GU Guo-hua, LI Chao. Harris Corner Detection Based on Bilateral Filtering[J]. Infrared Technology , 2014, (10): 812-815,819.
    [7]Influence of Electron Scrubbing on Flicker Noise of Double-MCP Image Intensifiers[J]. Infrared Technology , 2013, (5): 295-299.
    [8]Statistical Dynamics of 1/f Noise[J]. Infrared Technology , 2007, 29(9): 531-535. DOI: 10.3969/j.issn.1001-8891.2007.09.010
    [9]LIANG Jian, ZHENG Wen-yun, LIAO Huai-jun, LV Yi. to Reducing the Noise of Steady Voltage DC Source[J]. Infrared Technology , 2006, 28(3): 147-149. DOI: 10.3969/j.issn.1001-8891.2006.03.006
    [10]The Noise of Thermoimaging System[J]. Infrared Technology , 2003, 25(2): 33-36,40. DOI: 10.3969/j.issn.1001-8891.2003.02.009
  • Cited by

    Periodical cited type(10)

    1. 田文豪,汪繁荣,乔一航. 基于VMF-UNet的液基细胞制染机缺陷图像分割. 现代电子技术. 2025(05): 36-42 .
    2. 郑铁华,王飞,赵格兰,杜春晖. 基于单分类支持向量机的煤矿防爆电气设备振动故障自动检测. 工矿自动化. 2025(02): 106-112 .
    3. 王琦,张欣唯,童悦,王昱晴,张锦,王咏涛,袁小翠. 一种复杂背景下电气设备红外图像精确分割方法. 激光与红外. 2025(03): 399-407 .
    4. 刘慧慧,裴庆庆. 改进U-Net网络的多视觉图像特征张量分割仿真. 计算机仿真. 2024(03): 237-241 .
    5. 于晓,姜晨慧. 基于深度学习的重叠红外刑侦目标提取算法研究. 黑龙江工业学院学报(综合版). 2024(02): 85-93 .
    6. 林颖,张峰达,李壮壮,郑文杰,戈宁. 基于大模型的红外图像电力设备交互式分割. 网络新媒体技术. 2024(02): 53-60+67 .
    7. 张宇,袁小翠,许志浩,康兵. 复杂背景下断路器红外图形精确分割方法. 江西电力. 2024(03): 1-7 .
    8. 严如强,周峥,杨远贵,李亚松,胡晨烨,陶治宇,赵志斌,王诗彬,陈雪峰. 可解释人工智能在工业智能诊断中的挑战和机遇:归因解释. 机械工程学报. 2024(12): 21-40 .
    9. 龚律凯,彭伊丽,陈绪兵,韩桂荣,李慧怡. 基于改进U-Net算法的焊缝特征识别研究. 现代制造工程. 2024(11): 18-25 .
    10. 林颖,张峰达,李壮壮,孙艺玮,于文牮. 基于交互式分割的电力设备红外图像自动标注方法. 山东电力技术. 2023(12): 20-25+44 .

    Other cited types(10)

Catalog

    Article views (46) PDF downloads (23) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return