Citation: | ZHENG Kai, LUO Zhitao, ZHANG Hui. Research Status of Infrared Thermography in NDT of FRP Composites/Thermal Barrier Coatings and Its Development[J]. Infrared Technology , 2023, 45(10): 1008-1019. |
[1] |
Clarke D R, Phillpot S R. Thermal barrier coatings materials[J]. Materials Today, 2005, 8(6): 22-29. DOI: 10.1016/S1369-7021(05)70934-2
|
[2] |
徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究[J]. 航空学报, 2000, 21(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200001002.htm
XU Huibin, GONG Shengkai, LIU Fushun. Recent development in materials design of thermal barrier coating for gas turbine[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200001002.htm
|
[3] |
Meier S M, Gupta D K. The evolution of thermal barrier coating in gas turbine engine applications[J]. Transaction of the ASME, 1994, 116(1): 205-257.
|
[4] |
ZHAO Y X, LI D C, ZHONG X H, et al. Thermal shock behaviors of YSZ thick thermal barrier coatings fabricated by suspension and atmospheric plasma spraying[J]. Surface & Coatings Technology, 2014, 249: 48-55.
|
[5] |
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(9-10): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB2009Z2002.htm
GUO Hongbo, GONG Shengkai, XU Huibin. Progress in thermal barrier coatings for advanced aeroengines[J]. Materials China, 2009, 28(9-10): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB2009Z2002.htm
|
[6] |
Steinberger R, Valadas Leitão T L, Ladstätter E, et al. Infrared thermographic techniques for non-destructive damage characterization of carbon fibre reinforced polymers during tensile fatigue testing[J]. International Journal of Fatigue, 2006, 28(10): 1340-1347. DOI: 10.1016/j.ijfatigue.2006.02.036
|
[7] |
Suzuki Y, Todoroki A, Matsuzaki R, et al. Impact-damage visualization in CFRP by resistive heating: development of a new detection method for indentations caused by impact loads[J]. Composites Part A, 2012, 43(1): 53-64. DOI: 10.1016/j.compositesa.2011.09.003
|
[8] |
Goidescu C, Welemane H, Garnier C, et al. Damage investigation in CFRP composites using full-field measurement techniques: combination of digital image stereo-correlation, infrared thermography and X-ray tomography[J]. Composites Part B, 2013, 48: 95-105. DOI: 10.1016/j.compositesb.2012.11.016
|
[9] |
HE Y Z, TIAN G Y, PAN M C, et al. Impact evaluation in carbon fiber reinforced plastic(CFRP) laminates using eddy current pulsed thermography[J]. Composite Structures, 2014, 109(1): 1-7.
|
[10] |
QU Z, JIANG P, ZHANG W X. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20: 3851. DOI: 10.3390/s20143851
|
[11] |
Sophian A, TIAN G Y, Taylor D, et al. A feature extraction technique based on principal component analysis for pulsed eddy current NDT[J]. NDT & E International, 2003, 36(1): 37-41.
|
[12] |
郑凯, 江海军, 陈力. 红外热波无损检测技术的研究现状与进展[J]. 红外技术, 2018, 40(5): 401-411. http://hwjs.nvir.cn/article/id/hwjs201805001
ZHENG Kai, JIANG Haijun, CHEN Li. Infrared thermography NDT and its development [J]. Infrared Technology, 2018, 40(5): 401-411. http://hwjs.nvir.cn/article/id/hwjs201805001
|
[13] |
Almond D P, Lau S K. Edge effects and a method of defect sizing for transient thermography[J]. Applied Physics Letters, 1993, 62(25): 3369-3371. DOI: 10.1063/1.109074
|
[14] |
Maldague X, Marinetti S. Pulse phase infrared thermography[J]. Journal of Applied Physics, 1996, 79(5): 2694-2698. DOI: 10.1063/1.362662
|
[15] |
Ludwig N, Teruzzi P. Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography[J]. Infrared Physics & Technology, 2002, 43(3-5): 297-301.
|
[16] |
Maldague X, Ziadi A, Klein M. Double pulse infrared thermography[J]. NDT & E International, 2004, 37: 559-564.
|
[17] |
Meola C, Carlomagno G M. Impact damage in GFRP: new insights with infrared thermography[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(12): 1839-1847. DOI: 10.1016/j.compositesa.2010.09.002
|
[18] |
Almond D P, Pickering S G. An analytical study of the pulsed thermography defect detection limit[J]. Journal of Applied Physics, 2012, 111: 093510. DOI: 10.1063/1.4704684
|
[19] |
Azizinasab B, Hasanzadeh R P R, Hedayatrasa S, et al. Defect detection and depth estimation in CFRP through phase of transient response of flash thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2364-2373. DOI: 10.1109/TII.2021.3101492
|
[20] |
Rajic N. Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures[J]. Composite Structures, 2002, 58(4): 521-528. DOI: 10.1016/S0263-8223(02)00161-7
|
[21] |
Marinetti S, Finesso L, Marsilio E. Matrix factorization methods: application to thermal NDT/E[J]. NDT & E International, 2006, 39(8): 611-616.
|
[22] |
Alvarez-Restrepo C A, Benitez-Restrepo H D, Tobón L E. Characterization of defects of pulsed thermography inspections by orthogonal polynomial decomposition[J]. NDT & E International, 2017, 91: 9-21.
|
[23] |
Yousefi B, Sfarra S, Sarasini F, et al. Low-rank sparse principal component thermography (sparse-PCT): comparative assessment on detection of subsurface defects[J]. Infrared Physics & Technology, 2019, 98: 278-284.
|
[24] |
姜千辉, 姜长胜, 葛庆平, 等. 红外热波序列图像的图像分割与三维显示[J]. 无损检测, 2008, 30(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200802011.htm
JIANG Qianhui, JIANG Changsheng, GE Qingping, et al. Segmentation and 3D display of infrared thermal image[J]. Nondestructive Testing, 2008, 30(2): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC200802011.htm
|
[25] |
DUAN Y X, Servais P, Genest M, et al. ThermoPoD: a reliability study on active infrared thermography for the inspection of composite materials[J]. Journal of Mechanical Science and Technology, 2012, 26(7): 1985-1991. DOI: 10.1007/s12206-012-0510-8
|
[26] |
WU J Y, Sfarra S, Yao Y. Sparse principal component thermography for subsurface defect detection in composite products[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5594-5600. DOI: 10.1109/TII.2018.2817520
|
[27] |
WEN C M, Sfarra S, Gargiulo G, et al. Thermographic data analysis for defect detection by imposing spatial connectivity and sparsity constraints in principal component thermography[J]. IEEE Transactions on Industrial Informatics, 2018, 17(6): 3901-3909.
|
[28] |
LIU L, GAO B, WU S C, et al. Structured iterative alternating sparse matrix decomposition for thermal imaging diagnostic system[J]. Infrared Physics & Technology, 2020, 107: 103288.
|
[29] |
Ahmed J, GAO B, Woo W, et al. Ensemble joint sparse low rank matrix decomposition for thermography diagnosis system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 2648-2658. DOI: 10.1109/TIE.2020.2975484
|
[30] |
ZHANG X F, HE Y Z, Chady T, et al. CFRP impact damage inspection based on manifold learning using ultrasonic induced thermography[J]. IEEE Transactions on Industrial Informatics, 2019, 15(5): 2648-2659. DOI: 10.1109/TII.2018.2866413
|
[31] |
SHEN P, LUO Z T, WANG S, et al. Feature detection of GFRP subsurface defects using fast randomized sparse principal component thermography[J]. International Journal of Thermophysics, 2022, 43: 160. DOI: 10.1007/s10765-022-03076-z
|
[32] |
Bates D, Smith G, LU D, et al. Rapid thermal non-destructive testing of aircraft components[J]. Composites Part B, 2000, 31(3): 175-185. DOI: 10.1016/S1359-8368(00)00005-6
|
[33] |
Meola C, Carlomagno G M, Squillace A, et al. Non-destructive evaluation of aerospace materials with lock-in thermography[J]. Engineering Failure Analysis, 2006, 13(3): 380-388. DOI: 10.1016/j.engfailanal.2005.02.007
|
[34] |
Pickering S, Almond D. Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques[J]. NDT & E International, 2008, 41(7): 501-509.
|
[35] |
Montanini R, Freni F. Non-destructive evaluation of thick glass fiber-reinforced composites by means of optically excited lock-in thermography[J]. Composites Part A, 2012, 43(11): 2075-2082. DOI: 10.1016/j.compositesa.2012.06.004
|
[36] |
Lahiri B B, Bagavathiappan S, Reshmi P R, et al. Quantification of defects in composites and rubber materials using active thermography[J]. Infrared Physics & Technology, 2012(55): 191-199.
|
[37] |
Oliveira B C F D, Nienheysen P, Baldo C R, et al. Improved impact damage characterization in CFRP samples using the fusion of optical lock-in thermography and optical square-pulse shearography images[J]. NDT & E international, 2020, 111: 102215.
|
[38] |
刘俊岩, 戴景民, 王扬. 红外图像序列处理的锁相热成像理论与试验[J]. 红外与激光工程, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htm
LIU Junyan, DAI Jingmin, WANG Yang. Theory and experiment of IR lock-in thermography with image sequence processing [J]. Infrared and Laser Engineering, 2009, 38(2): 346-351. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200902043.htm
|
[39] |
刘俊岩, 戴景民, 王扬. 红外锁相法热波检测技术及缺陷深度测量[J]. 光学与精密工程, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm
LIU Junyan, DAI Jingmin, WANG Yang. Thermal wave detection and defect depth measurement based on lock-in thermography [J]. Optics and Precision Engineering, 2010, 18(1): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201001007.htm
|
[40] |
LIU J Y, WANG Y, DAI J M. Research on thermal wave processing of lock-in thermography based on analyzing image sequences for NDT[J]. Infrared Physics & Technology, 2010, 53(5): 348-357.
|
[41] |
GONG J L, LIU J Y, WANG F, et al. Inverse heat transfer approach for nondestructive estimation the size and depth of subsurface defects of CFRP composite using lock-in thermography[J]. Infrared Physics & Technology, 2015, 71: 439-447.
|
[42] |
LIU J Y, WANG F, LIU Y, et al. Inverse methodology for identification the thermal diffusivity and subsurface defect of CFRP composite by lock-in thermographic phase (LITP) profile reconstruction[J]. Composite Structures, 2016, 138: 214-226. DOI: 10.1016/j.compstruct.2015.11.062
|
[43] |
CAO Y P, DONG Y F, CAO Y L, et al. Two-stream convolutional neural network for non-destructive subsurface defect detection via similarity comparison of lock-in thermography signals[J]. NDT & E International, 2020, 112: 102246.
|
[44] |
DONG Y F, XIA C J, YANG J X, et al. Spatio-temporal 3-D residual networks for simultaneous detection and depth estimation of CFRP subsurface defects in lock-in thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(4): 2571-2581. DOI: 10.1109/TII.2021.3103019
|
[45] |
DONG Y F, ZHAO B W, YANG J X, et al. Two-stage convolutional neural network for joint removal of sensor noise and background interference in lock-in thermography[J]. NDT & E International, 2023, 137: 102816.
|
[46] |
LUO Z T, LUO H, WANG S, et al. Enhanced CFRP defect detection from highly undersampled thermographic data via low-rank tensor completion-based thermography[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8641-8653. DOI: 10.1109/TII.2022.3154786
|
[47] |
Tabatabaei N, Mandelis A. Thermal-wave radar: a novel subsurface imaging modality with extended depth-resolution dynamic range[J]. Review of Scientific Instruments, 2009, 80(3): 034902. DOI: 10.1063/1.3095560
|
[48] |
Tabatabaei N, Mandelis A, Amaechi B T. Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermography[J]. Applied Physics Letters, 2011, 98(16): 163706. DOI: 10.1063/1.3582243
|
[49] |
Mulaveesala R, Tuli S. Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection[J]. Applied Physics Letters, 2006, 89: 191913. DOI: 10.1063/1.2382738
|
[50] |
Mulaveesala R, Vaddi J S, Singh P. Pulse compression approach to infrared nondestructive characterization[J]. Review of Scientific Instruments, 2008, 79(9): 094901. DOI: 10.1063/1.2976673
|
[51] |
Tabatabaei N, Mandelis A. Thermal coherence tomography using match filter binary phase coded diffusion waves[J]. Physics Review Letters, 2011, 107: 165901. DOI: 10.1103/PhysRevLett.107.165901
|
[52] |
Kaiplavil S, Mandelis A. Truncated-correlation photothermal coherence tomography for deep subsurface analysis[J]. Nature Photonics, 2014, 8(8): 635-642. DOI: 10.1038/nphoton.2014.111
|
[53] |
Chatterjee K, Tuli S, Pickering S G, et al. A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J]. NDT & E International, 2011, 44(7): 655-667.
|
[54] |
Giorleo G, Meola C. Comparison between pulsed and modulated thermography in glass–epoxy laminates[J]. NDT & E International, 2002, 35(5): 287-292.
|
[55] |
Dua G, Arora V, Mulaveesala R. Defect detection capabilities of pulse compression based infrared non-destructive testing and evaluation[J]. IEEE Sensors Journal, 2020, 21(6): 7940-7947.
|
[56] |
Rani A, Mulaveesala R. Novel pulse compression favorable excitation schemes for infrared non-destructive testing and evaluation of glass fibre reinforced polymer materials[J]. Composite Structures, 2022, 286: 115338. DOI: 10.1016/j.compstruct.2022.115338
|
[57] |
Hedayatrasa S, Poelman G, Segers J, et al. Performance of frequency and/or phase modulated excitation waveforms for optical infrared thermography of CFRPs through thermal wave radar: a simulation study[J]. Composite Structures, 2019, 225: 111177. DOI: 10.1016/j.compstruct.2019.111177
|
[58] |
Hedayatrasa S, Poelman G, Segers J, et al. Novel discrete frequency-phase modulated excitation waveform for enhanced depth resolvability of thermal wave radar[J]. Mechanical Systems and Signal Processing, 2019, 132: 512-522. DOI: 10.1016/j.ymssp.2019.07.011
|
[59] |
Hedayatrasa S, Poelman G, Segers J, et al. On the application of an optimized frequency-phase modulated waveform for enhanced infrared thermal wave radar imaging of composites[J]. Optics and Lasers in Engineering, 2021, 138: 106411. DOI: 10.1016/j.optlaseng.2020.106411
|
[60] |
GONG J L, LIU J Y, QIN L, et al. Investigation of carbon fiber reinforced polymer (CFRP) sheet with subsurface defects inspection using thermal-wave radar imaging (TWRI) based on the multi-transform technique[J]. NDT & E International, 2014, 62: 130-136.
|
[61] |
WANG F, LIU J Y, LIU Y, et al. Research on the fiber lay-up orientation detection of unidirectional CFRP laminates composite using thermal-wave radar imaging[J]. NDT & E International, 2016, 84: 54-66.
|
[62] |
WANG F, WANG Y H, LIU J Y, et al. Optical excitation fractional Fourier transform (FrFT) based enhanced thermal-wave radar imaging (TWRI)[J]. Optics Express, 2018, 26(17): 21403. DOI: 10.1364/OE.26.021403
|
[63] |
YANG R Z, HE Y Z, Mandelis A, et al. Induction infrared thermography and thermal-wave-radar analysis for imaging inspection and diagnosis of blade composites[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5637-5647. DOI: 10.1109/TII.2018.2834462
|
[64] |
WU S C, GAO B, YANG Y, et al. Halogen optical referred pulse-compression thermography for defect detection of CFRP[J]. Infrared Physics & Technology, 2019, 102: 103006.
|
[65] |
LUO Z T, SHEN P, LUO H, et al. Advanced orthogonal frequency and phase modulated waveform for contrast-enhanced photothermal wave radar thermography[J]. Journal of Applied Physics, 2022, 131(22): 224903. DOI: 10.1063/5.0087734
|
[66] |
GUO W, DONG L H, WANG H D, et al. Discriminate the substrate crack under sprayed coatings using ultrasonic infrared thermography[J]. Infrared Physics & Technology, 2019, 102(9): 103073.
|
[67] |
GUO W, HUANG J K, ZHU J G, et al. Experimental investigation on detection of coating debonds in thermal barrier coatings using vibrothermography with a piezoceramic actuator[J]. NDT & E International, 2023, 137(7): 102859.
|
[68] |
ZHU W Y, LIU Z W, JIAO D C, et al. Eddy current thermography with adaptive carrier algorithm for non-destructive testing of debonding defects in thermal barrier coatings[J]. Journal of Nondestructive Evaluation, 2018, 37: 31. DOI: 10.1007/s10921-018-0483-3
|
[69] |
Cielo P, Dallaire S. Optothermal NDE of thermal-barrier coatings[J]. Journal of Materials Engineering, 1987, 9: 71-79. DOI: 10.1007/BF02833789
|
[70] |
LIU H N, Sakamoto M, Kishi K, et al. Detection of defects in thermal barrier coatings by thermography analysis[J]. Materials Transactions, 2003, 44(9): 1845-1850. DOI: 10.2320/matertrans.44.1845
|
[71] |
Shepard S M, Ahmed T, Rubadeux B A, et al. Synthetic processing of pulsed thermographic data for inspection of turbine components[J]. Insight-non-Destructive Testing and Condition Monitoring, 2001, 43(9): 587-589.
|
[72] |
Shepard S M, Lhota J R, Rubadeux B A, et al. Reconstruction and enhancement of active thermographic image sequences[J]. Optical Engineering, 2003, 42(5): 1337-1342. DOI: 10.1117/1.1566969
|
[73] |
Shepard S M, HOU Y L, Lhota J R, et al. Thermographic measurement of thermal barrier coating thickness[C]//Proceedings of SPIE, 2005, 5782: 407-410.
|
[74] |
Marinetti S, Vavilov V, Bison P, et al. Quantitative infrared thermographic nondestructive testing of thermal barrier coatings[J]. Materials Evaluation, 2003, 61(6): 773-780.
|
[75] |
Marinetti S, Robba D, Cernuschi F, et al. Thermographic inspection of TBC coated gas turbine blades: discrimination between coating over-thicknesses and adhesion defects[J]. Infrared Physics & Technology, 2007, 49(3): 281-285.
|
[76] |
Cernuschi F, Marinetti S. Discrimination between over-thickness and delamination of thermal barrier coatings by apparent thermal effusivity thermographic technique[J]. Journal of Thermal Spray Technology, 2010, 19(5): 958-963. DOI: 10.1007/s11666-010-9493-0
|
[77] |
Bison P, Cernuschi F, Grinzato E. In-depth and in-plane thermal diffusivity measurements of thermal barrier coatings by IR camera: evaluation of ageing[J]. International Journal of Thermophysics, 2008, 29(6): 2149-2161. DOI: 10.1007/s10765-008-0421-1
|
[78] |
Cernuschi F, Bison P, Figari A, et al. Thermal diffusivity measurements by photothermal and thermographic techniques[J]. International Journal of Thermophysics, 2004, 25(2): 439-457. DOI: 10.1023/B:IJOT.0000028480.27206.cb
|
[79] |
Cernuschi F, Bison P, Marinetti S, et al. Thermal diffusivity measurement by thermographic technique for the non-destructive integrity assessment of TBCs coupons[J]. Surface and Coatings Technology, 2010, 205(2): 498-505. DOI: 10.1016/j.surfcoat.2010.07.024
|
[80] |
Bison P, Cernuschi F, Capelli S. A thermographic technique for the simultaneous estimation of in-plane and in-depth thermal diffusivities of TBCs[J]. Surface and Coatings Technology, 2011, 205(10): 3128-3133. DOI: 10.1016/j.surfcoat.2010.11.013
|
[81] |
Cernuschi F. Can TBC porosity be estimated by non-destructive infrared techniques? a theoretical and experimental analysis[J]. Surface and Coatings Technology, 2015, 272: 387-394. DOI: 10.1016/j.surfcoat.2015.03.036
|
[82] |
Franke B, Sohn Y H, CHEN X, et al. Monitoring damage evolution in thermal barrier coatings with thermal wave imaging[J]. Surface and Coatings Technology, 2005, 200(5-6): 1292-1297. DOI: 10.1016/j.surfcoat.2005.07.090
|
[83] |
Choi C, Choi S H, Kim J. Study for blade ceramic coating delamination detection for gas turbine[J]. International Journal of Modern Physics B, 2008, 22(31n32): 5699-5704. DOI: 10.1142/S0217979208051030
|
[84] |
Schweda M, Beck T, Offermann M, et al. Thermographic analysis and modelling of the delamination crack growth in a thermal barrier coating on Fecralloy substrate[J]. Surface and Coatings Technology, 2013, 217: 124-128. DOI: 10.1016/j.surfcoat.2012.12.002
|
[85] |
Schweda M, Beck T, Malzbender J, et al. Damage evolution of a thermal barrier coating system with 3-dimensional periodic interface roughness: effects of roughness depth, substrate creep strength and pre-oxidation[J]. Surface and Coatings Technology, 2015, 276: 368-373. DOI: 10.1016/j.surfcoat.2015.06.046
|
[86] |
Tinsley L, Chalk C, Nicholls J, et al. A study of pulsed thermography for life assessment of thin EB-PVD TBCs undergoing oxidation ageing[J]. NDT & E International, 2017, 92: 67-74.
|
[87] |
Ptaszek G, Cawley P, Almond D, et al. Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems[J]. NDT & E International, 2012, 45(1): 71-78.
|
[88] |
Ptaszek G, Cawley P, Almond D, et al. Transient thermography testing of unpainted thermal barrier coating (TBC) systems[J]. NDT & E International, 2013, 59: 48-56.
|
[89] |
Ptaszek G. Investigation and development of transient thermography for detection of disbonds in thermal barrier coating systems[D]. Imperial College London, 2012.
|
[90] |
Mezghani S, Perrin E, Vrabie V, et al. Evaluation of paint coating thickness variations based on pulsed infrared thermography laser technique[J]. Infrared Physics & Technology, 2016, 76: 393-401.
|
[91] |
Unnikrishnakurup S, Dash J, Ray S, et al. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: a comparative study[J]. NDT & E International, 2020, 116: 102367.
|
[92] |
郭兴旺, 丁蒙蒙. 热障涂层红外热无损检测的建模和有限元分析[J]. 北京航空航天大学学报, 2009, 35(2): 174-178. DOI: 10.13700/j.bh.1001-5965.2009.02.005
GUO Xingwang, DING Mengmeng. Modeling and finite element analysis of thermal barrier coatings in IR NDT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 174-178. DOI: 10.13700/j.bh.1001-5965.2009.02.005
|
[93] |
郭兴旺, 丁蒙蒙. 热障涂层厚度及厚度不均热无损检测的数值模拟[J]. 航空学报, 2010, 31(1): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001031.htm
GUO Xingwang, DING Mengmeng. Simulation of thermal NDT of thickness and its unevenness of thermal barrier coatings [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001031.htm
|
[94] |
ZHAO S B, ZHANG C L, WU N M, et al. Quality evaluation for air plasma spray thermal barrier coatings with pulsed thermography[J]. Progress in Natural Science: Materials International, 2011, 21(4): 301-306. DOI: 10.1016/S1002-0071(12)60061-6
|
[95] |
ZHAO S B, WANG H M, WU N M, et al. Nondestructive testing of the fatigue properties of air plasma sprayed thermal barrier coatings by pulsed thermography[J]. Russian Journal of Nondestructive Testing, 2015, 51: 445-456. DOI: 10.1134/S1061830915070074
|
[96] |
刘颖韬, 牟仁德, 郭广平, 等. 热障涂层闪光灯激励红外热像检测[J]. 航空材料学报, 2015, 35(6): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506014.htm
LIU Yingtao, MAO Rende, GUO Guangping, et al. Infrared flash thermographic nondestructive testing of defects in thermal barrier coating [J]. Journal of Aeronautical Materials, 2015, 35(6): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201506014.htm
|
[97] |
陈林, 杨立, 范春利, 等. 基于相位的热障涂层厚度及其脱粘缺陷红外定量识别[J]. 红外与激光工程, 2015, 44(7): 2050-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507015.htm
CHEN Lin, YANG Li, FAN Chunli, et al. Quantitative identification of coating thickness and debonding defects of TBC by pulse phase technology [J]. Infrared and Laser Engineering, 2015, 44(7): 2050-2056. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507015.htm
|
[98] |
BU C W, TANG Q J, LIU Y L, et al. Quantitative detection of thermal barrier coating thickness based on simulated annealing algorithm using pulsed infrared thermography technology[J]. Applied Thermal Engineering, 2016, 99: 751-755. DOI: 10.1016/j.applthermaleng.2016.01.143
|
[99] |
TANG Q J, LIU J Y, DAI J M, et al. Theoretical and experimental study on thermal barrier coating (TBC) uneven thickness detection using pulsed infrared thermography technology[J]. Applied Thermal Engineering, 2017, 114: 770-775. DOI: 10.1016/j.applthermaleng.2016.12.032
|
[100] |
TANG Q J, DAI J M, LIU J Y, et al. Quantitative detection of defects based on Markov-PCA-BP algorithm using pulsed infrared thermography technology[J]. Infrared Physics & Technology, 2016, 77: 144-148.
|
[101] |
BU C W, SUN Z H, TANG Q J, et al. Thermography sequence processing and defect edge identification of TBC structure debonding defects detection using long-pulsed infrared wave non-destructive testing technology[J]. Russian Journal of Nondestructive Testing, 2019, 55: 80-87. DOI: 10.1134/S1061830919010030
|
[102] |
郭伟, 董丽虹, 王海斗, 等. 基于小波分解的热波相位特征提取及喷涂层厚度评价[J]. 红外与激光工程, 2017, 46(9): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709014.htm
GUO Wei, DONG Lihong, WANG Haidou, et al. Phase spectra extract of thermal wave with wavelet decomposition and coating thickness estimation[J]. Infrared and Laser Engineering, 2017, 46(9): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201709014.htm
|
[103] |
董丽虹, 郭伟, 王海斗, 等. 热障涂层界面脱粘缺陷的脉冲红外热成像检测[J]. 航空学报, 2019, 40(8): 422895. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908024.htm
DONG Lihong, GUO Wei, WANG Haidou, et al. Phase spectra extract of thermal wave with wavelet decomposition and coating thickness estimation [J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 422895. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201908024.htm
|
[104] |
GUO W, DONG L H, WANG H D, et al. Size estimation of coating disbonds using the first derivative images in pulsed thermography[J]. Infrared Physics & Technology, 2020, 104: 103106.
|
[105] |
LIU Z W, JIAO D C, SHI W X, et al. Linear laser fast scanning thermography NDT for artificial debond defects in thermal barrier coatings[J]. Optics Express, 2017, 25(25): 31789. DOI: 10.1364/OE.25.031789
|
[106] |
JIAO D C, LIU Z W, ZHU W Y, et al. Exact localization of debonding defects in thermal barrier coatings[J]. AIAA Journal, 2018, 56(9): 3691-3700. DOI: 10.2514/1.J056806
|
[107] |
CHEN F, ZHANG K, JIANG H J, et al. Thickness evaluations for thin coatings using laser scanning thermography[J]. NDT & E International, 2023, 137(17): 102817.
|
[108] |
JIAO D C, SHI W X, LIU Z W, et al. Laser multi-mode scanning thermography method for fast inspection of micro-cracks in TBCs surface[J]. Journal of Nondestructive Evaluation, 2018, 37: 30. DOI: 10.1007/s10921-018-0485-1
|
[109] |
Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography - Part Ⅰ: simulation[J]. Infrared Physics & Technology, 2017, 83: 124-131.
|
[110] |
Shrestha R, Kim W. Evaluation of coating thickness by thermal wave imaging: a comparative study of pulsed and lock-in infrared thermography – Part Ⅱ: experimental investigation[J]. Infrared Physics & Technology, 2018, 92: 24-29.
|
[111] |
ZHANG J Y, MENG X B, MA Y C. A new measurement method of coatings thickness based on lock-in thermography[J]. Infrared Physics & Technology, 2016, 76: 655-660.
|
[112] |
TANG Q J, DAI J M, BU C W, et al. Experimental study on debonding defects detection in thermal barrier coating structure using infrared lock-in thermographic technique[J]. Applied Thermal Engineering, 2016, 107: 463-468.
|
[113] |
SONG P, XIAO P, LIU J Y, et al. The inspection of coating thickness uniformity of SiC-coated carbon-carbon (C/C) composites by laser-induced thermal-wave imaging [J]. Carbon, 2019, 147: 348-356.
|
[114] |
SHI L C, LONG Y, WANG Y Z, et al. Online nondestructive evaluation of TBC crack using infrared thermography[J]. Measurement Science and Technology, 2021, 32(11): 115008.
|
[115] |
WANG F, LIU J Y, Mohummad O, et al. Research on debonding defects in thermal barrier coatings structure by thermal-wave radar imaging (TWRI)[J]. International Journal of Thermophysics, 2018, 39: 71.
|
[116] |
LUO Z T, LUO H, WANG S, et al. The photothermal wave field and high-resolution photothermal pulse compression thermography for ceramic/metal composite solids[J]. Composite Structures, 2022, 282(4): 115069.
|