FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072.
Citation: FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072.

Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors

More Information
  • Received Date: March 02, 2022
  • Revised Date: April 20, 2022
  • With the advancements in infrared detector technology, long-wavelength infrared imaging lenses having a large relative aperture and large-array are being fabricated. In this study, a long-wavelength infrared athermalized lens with a large relative aperture (F/#=0.8) was designed for a large-array detector (1024 × 68@12 μm). Based on the temperature characteristics of different infrared materials and the theory of optical passive athermalization, the lens has a combination design of three infrared materials and an aberration correction design of four aspherical surfaces. The system is developed such that the spot diagram and modulation transfer function curve of every field of view have only small changes in the temperature range of −40–60℃, thus satisfying the optical non-heating design requirement. The lens has the advantages of a high luminous flux, compact structure, and good manufacturability. It can be used in driver assistance systems and aircraft pods for situation awareness.
  • [1]
    李其昌, 李兵伟, 王宏臣. 非制冷红外成像技术发展动态及其军事应用[J]. 军民两用技术与产品, 2016(21) : 54-57. DOI: 10.3969/j.issn.1009-8119.2016.21.029

    LI Qichang, LI Bingwei, WANG Hongchen. Development and military application of uncooled infrared imaging technology[J]. Dual Use Technologies & Products, 2016(21): 54-57. DOI: 10.3969/j.issn.1009-8119.2016.21.029
    [2]
    Doruk Kucukcelebi, Dogan Ugur Sakarya. Comparison of passive athermalization results of LWIR optical designs utilizing different infrared optical materials[C]//Current Developments in Lens Design and Optical Engineering XXI, 2020: 114820K1-K10.
    [3]
    陈潇. 大面阵长波红外光学无热化镜头的设计[J]. 红外技术, 2018, 40(11): 1061-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201811007.htm

    CHEN Xiao. Design of long-wavelength infrared athermalization lens for large-array detector[J]. Infrared Technology, 2018, 40(11): 1061-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS201811007.htm
    [4]
    张继艳, 林海峰, 黄章超. 基于硫系玻璃的紧凑式大相对孔径长波红外光学系统无热化设计[J]. 应用光学, 2021(5): 790-795. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202105006.htm

    ZHANG Jiyan, LIN Haifeng, HUANG Zhangchao. Compact large relative aperture long wavelength infrared athtermalization optical system with chalcogenide glasses[J]. Journal of Applied Optics, 2021(5): 790-795. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202105006.htm
    [5]
    孙爱平, 龚杨云, 陈忠, 等. 大孔径、大视场辅助驾驶仪红外镜头无热化设计[J]. 红外技术, 2013, 35(10): 617-622. DOI: 10.11846/j.issn.1001_8891.201310004

    SUN Aiping, GONG Yangyun, CHEN Zhong, et al. Athermal design of a large-aperture, wide-field assisting pilot infrared lens[J]. Infrared Technology, 2013, 35(10): 617-622. DOI: 10.11846/j.issn.1001_8891.201310004
    [6]
    岑兆丰, 李晓彤. 光学系统温度效应分析和无热化设计[J]. 激光与光电子学进展, 2009, 46(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200902041.htm

    CEN Zhaofeng, LI Xiaotong. Thermal effect analysis and athermal design of optical system[J]. Laser & Optoelectronics Progress, 2009, 46(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ200902041.htm
    [7]
    Owens J C. Optical refractive index of air: dependence on pressure, temperature and composition[J]. Applied Optics, 1967, 6(1): 51-9 DOI: 10.1364/AO.6.000051
    [8]
    白玉琢, 元延婷, 程海娟, 等. 机械补偿式红外温度自适应光机系统的设计[J]. 红外技术, 2012, 34(11): 652-656. https://opticsjournal.net/M/Articles/OJf2c0a11d25a22523/Abstract

    BAI Yuzhuo, YUAN Yanting, CHENG Haijuan, et al. Design of a mechanical passive athermal infrared lens[J]. Infrared Technology, 2012, 34(11): 652-656. https://opticsjournal.net/M/Articles/OJf2c0a11d25a22523/Abstract
    [9]
    赵远, 张宇. 光电信号检测原理与技术[M]. 北京: 机械工业出版社, 2005.

    ZHAO Yuan, ZHANG Yu. Principle and Technology of Photoelectric Signal Detection[M]. Beijing: China Machine Press, 2005.
    [10]
    吴海清, 田海霞, 崔莉. 大视场、大相对孔径长波红外机械无热化光学系统设计[J]. 红外, 2015, 36(8): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201508001.htm

    WU Haiqing, TIAN Haixia, CUI Li. Design of mechanically athermalized longwave infrared optical system with wide field of view and large relative aperture[J]. Infrared, 2015, 36(8): 1-4, 8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201508001.htm
    [11]
    李升辉, 杨长城. 采用衍射元件实现消热差的中波红外光学系统[C]//中国造船工程学会2009年优秀学术论文集, 2010: 257-263.

    LI Shenghui, YANG Changcheng. Medium wave infrared optical system using diffractive elements to achieve athermalization[C]// Collected Academic Excellent Papers of the Chinese Society of Naval Architects and Marine Engineers in 2009, 2010: 257-263.
    [12]
    李林. 应用光学: 4版[M]. 北京: 北京理工大学出版社, 2010.

    LI Lin. Applied Optics[M]. 4th edition, Beijing: Beijing Institute of Technology Press, 2010.
    [13]
    沈为民, 薛鸣球, 余建军. 大相对孔径长波红外广角物镜[C]//大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集, 2004: 2331-2341.

    SHEN Weimin, XUE Mingqiu, YU Jianjun. High-speed long-wave infrared wide-angle objectives[C]//Collected Works of Mr. Daheng's 90th Birthday and Collected Papers of the 2004 Academic Conference of the Chinese Optical Society, 2004: 2331-2341.
    [14]
    周晓斌, 张衡, 文江华, 等. 长波红外光学系统混合被动无热化设计[J]. 红外技术, 2021, 43(9): 836-839. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202109004.htm

    ZHOU Xiaobin, ZHANG Heng, WEN Jianghua, et al. LWIR optical system design by passive athermalization[J]. Infrared Technology, 2021, 43(9): 836-839. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202109004.htm
  • Cited by

    Periodical cited type(8)

    1. 刘杰,汪冰,马涛,李奇,左标. 半导体单光子雪崩光电二极管的封装发展. 光学与光电技术. 2023(01): 108-117 .
    2. 郭可飞,尹飞,刘立宇,乔凯,李鸣,汪韬,房梦岩,吉超,屈有山,田进寿,王兴. Zn扩散对InGaAs/InP单光子雪崩光电二极管雪崩击穿概率的影响. 光子学报. 2023(06): 192-202 .
    3. 刘海军,张靖,莫才平,段利华,闫应星,黄晓峰. SiNx表面修饰在剥离技术中的应用. 信息记录材料. 2022(07): 58-61 .
    4. 史衍丽,朱泓遐,杨雪艳,曾辉,李再波,刘辰,王建,王伟. InP基自由运行模式单光子APD. 红外与激光工程. 2020(01): 56-63 .
    5. 顾小琨,李永亮,胡伟伟,刘泓鑫,张英明,张翼鹏. 激光测距系统中光电探测器的研究进展. 量子光学学报. 2019(01): 100-108 .
    6. 胡伟达,李庆,陈效双,陆卫. 具有变革性特征的红外光电探测器. 物理学报. 2019(12): 7-41 .
    7. 于跃,刘雪莲,单泽彪,王春阳,杨波. SPAD单光子探测器的SPICE模型及其CQC淬火电路研究. 红外技术. 2019(08): 726-730 . 本站查看
    8. 唐张婷,赵凤麒,杜雷浩. 基于人工智能的振动模式识别系统. 卫星电视与宽带多媒体. 2019(13): 22-23 .

    Other cited types(11)

Catalog

    Article views (184) PDF downloads (80) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return