Citation: | JIANG Yi, HOU Liping, ZHANG Qiang. Infrared Pedestrian Action Recognition Based on Improved Spatial-temporal Two-stream Convolution Network[J]. Infrared Technology , 2021, 43(9): 852-860. |
[1] |
Karpathy A, Toderici G, Shetty S, et al. Large- scale video classification with convolutional neural networks[C]// CVPR, 2014: 1725-1732.
|
[2] |
Tran D, Bourdev L D, Fergus R, et al. Learning spatiotem-poral features with 3d convolutional networks[C]//ICCV, 2015: 4489-4497.
|
[3] |
ZHANG B, WANG L, WANG Z, et al. Real-time action recognition with enhanced motion vector CNNs[C]//CVPR, 2016: 2718-2726.
|
[4] |
Niebles J C, CHEN C W, LI F F. Modeling temporal structure of decomposable motion segments for activity classification[C]// ECCV, 2010: 392-405.
|
[5] |
Tumas P, Nowosielski A, Serackis A. Pedestrian detection in severe weather conditions[J]. IEEE Access, 2020, 8: 62775-62784. DOI: 10.1109/ACCESS.2020.2982539
|
[6] |
魏丽, 丁萌, 曾丽君. 红外图像中基于似物性与稀疏编码的行人检测[J]. 红外技术, 2016, 38(9): 752-757. http://hwjs.nvir.cn/article/id/hwjs201609007
WEI Li, DING Meng, ZENG Lijun. Pedestrian Detection Based on Objectness and Sparse Coding in a Single Infrared Image[J]. Infrared Technology, 2016, 38(9): 752-757. http://hwjs.nvir.cn/article/id/hwjs201609007
|
[7] |
Fernando B, Gavves E M, Ghodrati J O, et al. Modeling video evolution for action recognition[C]//CVPR, 2015: 5378-5387.
|
[8] |
Varol G, Laptev I, Schmid C. Long-term temporal convolutions for action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 40(6): 1510-1517.
|
[9] |
Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term Recurrent Convolutional Networks for Visual Recognition and Description[M]. Elsevier, 2015: 2625-2634.
|
[10] |
Soomro K, Zamir A R, Shah M. A dataset of 101 human actions classes from videos in the wild[J/OL]. Computer Vision and Pattern Recognition, arXiv: 1212.0402, 2012.
|
[11] |
Kuehne H, Jhuang H, Garrote E, et al. HMDB: A large video database for human motion recognition[C]//ICCV, 2011: 2556-2563.
|
[12] |
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//ICML, 2015: 448-456.
|
[13] |
WANG L, QIAO Y, TANG X. Video action detection with relational dynamic- poselets[C]//ECCV, 2014: 565-580.
|
[14] |
GAN C, YAO T, YANG K, et a. You lead, we exceed: Labor-free video concept learning by jointly exploiting web videos and images[C]//CVPR, 2016: 923-932.
|
[15] |
Simonyan K, Zisserman A. Two-Stream Convolutional Networks for Action Recognition in Videos[J]. Advances in Neural Information Processing Systems, 2014, 150: 109-125. http://de.arxiv.org/pdf/1406.2199
|
[16] |
冉鹏, 王灵, 李昕, 等. 改进Softmax分类器的深度卷积神经网络及其在人脸识别中的应用[J]. 上海大学学报: 自然科学版, 2018, 24(3): 352-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201803004.htm
RAN Peng, WANG Ling, LI Xin, et al. Deep convolution neural network based on improved softmax classifier and its application in face recognition[J]. Journal of Shanghai University: Natural Science Edition, 2018, 24(3): 352-366. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201803004.htm
|
[17] |
Yasin H, Hussain M, Weber A. Keys for Action: An Efficient Keyframe-Based Approach for 3D Action Recognition Using a Deep Neural Network[J]. Sensors, 2020, 20(8): 2226. DOI: 10.3390/s20082226
|
[18] |
GAO Chenqiang, DU Yinhe, LIU Jiang, et al. InfAR dataset: Infrared action recognition at different times[J]. Neurcomputing, 2016, 212: 36-47. DOI: 10.1016/j.neucom.2016.05.094
|
[19] |
WANG H, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 3551-3558.
|
[20] |
Du Tran, Lubomir Bourdev, Rob Fergus, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE, International Conference on Computer Vision. Piscataway: IEEE, 2015: 4489-4497.
|
[21] |
杨天明, 陈志, 岳文静. 基于视频深度学习的时空双流人物动作识别模型[J]. 计算机应用, 2018, 38(3): 895-899. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201803050.htm
YANG T M, CHENG Z, YU, W J, et al. Spatio-temporal two-stream human action recognition model based on video deep learning[J]. Journal of Computer Applications, 2018, 38(3): 895-899, 915. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201803050.htm
|
[22] |
LIN S, JIA K, CHEN K, et al. Lattice long short-term memory for human action recognition[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2166-2175.
|
[23] |
Carrlira J, Gisslrman A. Quo vadis. action recognition? A new model and the kinetics dataset[C]//Proceedings of the 2017 IEEE, Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4724-4733.
|
[24] |
SUN S, KUANG Z, SHENG L, et al. Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 20118-20132.
|
[1] | QIU Xiangbiao, MIN Xinjie, JIN Ge, SUN Jiangning, WANG Jian, CONG Xiaoqing, ZHANG Zhengjun, XU Zhao, PAN Kai, REN Ling, ZHANG Zhen, QIAO Fangjian, NIE Huijun, HUANG Guorui, CHEN Xiaoqian, HU Zexun, LIN Yanjian, LIU Dan, YANG Xiaoming. Theoretical Model of Funnel Microchannel Plate Fabricated through Dry Etching[J]. Infrared Technology , 2022, 44(8): 818-823. |
[2] | CONG Xiaoqing, SUN Jianning, ZHANG Jiawei, LIU Wenwei, ZHANG Zhengjun, XU Wei, QIAN Lin, LI Jingwen, SUN Sailin, RUAN Kai, LIN Zheng. Temperature Field of Glass Fiber-Drawing Furnaces for Microchannel Plate Fabrication[J]. Infrared Technology , 2021, 43(5): 490-495. |
[3] | ZHANG Zhengjun, LI Jingwen, NIU Pengjie, CONG Xiaoqing, QIU Xiangbiao, WANG Jian. Micro-channel Plate Etching Technology in Lye[J]. Infrared Technology , 2020, 42(8): 752-757. |
[4] | SI Shuguang, JIN Muchun, WANG Xingchao, HUANG Guorui, JIN Zhen, XU Haiyang, WU Kai, WANG Ning, HUANG Zhiyao, SUN Jianning, REN Ling, LI Shen, SHI Mengyao, ZHANG Haoda, CAO Yiqi, HOU Wei, GU Ying, ZHAO Min, YE Hao, TANG Sichen. "Solar Blind" Ultraviolet Microchannel Plate Photomultiplier[J]. Infrared Technology , 2020, 42(8): 722-728. |
[5] | SI Shuguang, JIN Zhen, HUANG Guorui, WANG Xingchao, SUN Jianning, SU Detan, REN Ling, XU Haiyang, WU Kai, JIN Muchun, HUANG Zhiyao, LI Shen, GU Yan, WANG Ning, SHI Mengyao, ZHANG Cheng, CAO Yiqi, WANG Zhi, ZHANG Haoda, TANG Sichen. Study on the Performance of an Ultraviolet Microchannel Plate Photomultiplier[J]. Infrared Technology , 2020, 42(7): 605-610. |
[6] | SU Detan, LI Shen, SUN Jianning, HUANG Guorui, SI Shuguang, LI Dong, JIN Zhen, REN Ling, WANG Xingchao, GAO Feng, YANG Yuzhen, QIAN Sen, LIU Shulin, ZHANG Haoda, XU Haiyang, JIN Muchun, QIAO Fangjian, CAO Yiqi, XIE Fei. Study on the Relationship between Voltage Divider Ratio and Energy Resolution of Microchannel Plate Photomultiplier[J]. Infrared Technology , 2018, 40(12): 1125-1129. |
[7] | HAO Ziheng, LI Xiangxin, ZHANG Ni, ZHU Yufeng, LI Dan. Preparation of High Gain Secondary Electron Emission Layer for Micro-channel Plate[J]. Infrared Technology , 2018, 40(11): 1077-1080. |
[8] | Microchannel PlatePhoton Detector with Spatial and Temporal Sensitivity[J]. Infrared Technology , 2018, 40(11): 1025-1032. |
[9] | ZHANG Yang, HUANG Yong-gang, LIU Hui, LI Guo-en. Progress in Anodic Aluminum Oxide Microchannel Plates[J]. Infrared Technology , 2012, 34(7): 427-432. DOI: 10.3969/j.issn.1001-8891.2012.07.010 |
[10] | Technology and Performance of Filmed Microchannel Plate[J]. Infrared Technology , 2003, 25(4): 84-87. DOI: 10.3969/j.issn.1001-8891.2003.04.021 |