XI Xiaowen, SU Qingfeng, YUAN Yanni, JIANG Haijun, CHEN Li, WEI Yibing. Comparative Study of Using Ultrasonic Infrared Thermography for Detecting Aeroengine Blade Cracks[J]. Infrared Technology , 2021, 43(2): 186-191.
Citation: XI Xiaowen, SU Qingfeng, YUAN Yanni, JIANG Haijun, CHEN Li, WEI Yibing. Comparative Study of Using Ultrasonic Infrared Thermography for Detecting Aeroengine Blade Cracks[J]. Infrared Technology , 2021, 43(2): 186-191.

Comparative Study of Using Ultrasonic Infrared Thermography for Detecting Aeroengine Blade Cracks

More Information
  • Received Date: August 06, 2020
  • Revised Date: August 09, 2020
  • Owing to the complex curved surface structure of aeroengine blades, it is difficult to detect tiny cracks formed during servicing. In this study, ultrasonic infrared thermography technology was used to detect the blade cracks of an aero engine. Ultrasonic infrared thermal imaging technology was studied, and an experimental platform for ultrasonic infrared thermal imaging was built. In addition, the working blade of an aero engine with cracks arising from actual servicing was detected. The results of ultrasonic infrared thermography were compared with those of osmotic detection and metallographic detection. Experimental results show that in the working blade of the aero engine, ultrasonic infrared thermography technology detected two crack defects and one opening defect, whereas only one crack defect is detected by penetrant testing and two crack defects are detected by a metallographic microscope.The widths are approximately 15 μm and 0.5 μm, respectively, which are consistent with the detection results of ultrasonic infrared thermography. The results show that ultrasonic infrared thermography technology can effectively detect crack defects in aeroengine blades with complex curved surfaces.
  • [1]
    于霞, 张卫民, 邱忠超, 等. 航空发动机涡轮叶片裂纹检测信号特征提取[J]. 兵工学报, 2014, 35(8): 1267-1274. DOI: 10.3969/j.issn.1000-1093.2014.08.020

    YU Xia, ZHANG Weimin, QIU Zhongchao, et al. Signal feature extraction of aero-engine turbine blade crack detection[J]. Acta Armam, 2014, 35 (8): 1267-1274. DOI: 10.3969/j.issn.1000-1093.2014.08.020
    [2]
    宋凯, 刘堂先, 李来平, 等. 航空发动机涡轮叶片裂纹的阵列涡流检测仿真[J]. 航空学报, 2014, 35 (8): 2355-2363. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201408030.htm

    SONG Kai, LIU Tangxian, LI Laiping, et al. Simulation on aero-engine turbine blade cracks detection based on eddy current array[J]. Chinese Journal of Aeronautics, 2014, 35 (8): 2355-2363. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201408030.htm
    [3]
    万利, 李舜酩, 金业壮. 某型发动机压气机第1级整流叶片疲劳试验研究[J]. 航空发动机, 2008, 34(3): 15-17. DOI: 10.3969/j.issn.1672-3147.2008.03.005

    WAN Li, LI Shunming, JIN Yezhuang. Fatigue test of an aeroengine compressor IGVs[J]. Aeroengine, 2008, 34(3): 15-17. DOI: 10.3969/j.issn.1672-3147.2008.03.005
    [4]
    许锷俊. 缺陷、损伤、微裂纹对航空发动机构件服役总寿命及可靠性的影响[J]. 航空发动机, 2003, 29(2): 11-15. DOI: 10.3969/j.issn.1672-3147.2003.02.004

    XU Ejun. The effect of defects, damage and micro crack on total life and reliability of aeroengine components in service[J]. Aeroengine, 2003, 29(2): 11-15. DOI: 10.3969/j.issn.1672-3147.2003.02.004
    [5]
    耿荣生, 郑勇. 航空无损检测技术发展动态及面临的挑战[J]. 无损检测, 2002, 24(1): 1-5. DOI: 10.3969/j.issn.1000-6656.2002.01.001

    GENG Rongsheng, ZHENG Yong. Prospective vies on the application of nondestructive testing in air industry and possible challenges[J]. Nondestructive Testing, 2002, 24(1): 1-5. DOI: 10.3969/j.issn.1000-6656.2002.01.001
    [6]
    孙护国, 霍武军. 航空发动机涡轮叶片的检测技术[J]. 航空发动机, 2002, 28(1): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200201006.htm

    SUN Huguo, HUO Wujun. Inspection technique for turbine blade in aeroengine[J]. Aeroengine, 2002, 28 (1): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ200201006.htm
    [7]
    郭海鸥. 飞机某型发动机压缩机一级叶片裂纹检测研究[J]. 无损探伤, 2004, 28(5): 45-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS200405014.htm

    GUO Hai'ou. Research on crack detection of the first stage blade of an aircraft engine compressor[J]. Nondestructive Testing, 2004, 28(5): 45-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS200405014.htm
    [8]
    曹益平, 李路明, 黄刚, 等. 基于电磁检测原理的疲劳裂纹检测方法[J]. 清华大学学报, 2005, 45(11): 53-459. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200511003.htm

    CAO Yiping, LI Luming, HUANG Gang, et al. Fatigue crack detection based on electromagnetic testing[J]. Journal of Tsinghua Univesity : Science and Technology, 2005, 45(11): 53-459. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200511003.htm
    [9]
    程云勇, 张定华, 毛海鹏, 等. 一种基于工业CT的航空发动机涡轮叶片生产检测系统关键技术研究[J]. 制造技术与机床, 2004, 6(1): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC200401008.htm

    CHENG Yunyong, ZHANG Dinghua, MAO Haipeng, et al. Research on key techniques of inspection system for aero-engine turbine blade based on industrial CT[J]. Manufacturing Technology & Machine Tool, 2004, 6(1): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYC200401008.htm
    [10]
    ZHOU Jianwei, Martin C Lugg, Roy Collins. A non-uniform model for alternating current filed measurement of fatigue cracks in metal[J]. Int. J. of Applied Electromagnetics and Mechanics, 1999, 10: 221-235. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=2081322&site=ehost-live
    [11]
    Favro L D, Han X, Ouyang Z, et al. Infrared imaging of defects heated by sonic pulse[J]. Rev. Sci. Instrum, 2000, 71(6): 2418-2421. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4997844
    [12]
    敬甫盛, 李朋, 江海军, 等. 基于超声热波成像技术的机车钩舌的裂纹检测[J]. 红外技术, 2020, 42(2): 158-162. http://hwjs.nvir.cn/article/id/hwjs202002009

    JING Fusheng, LI Peng, JIANG Haijun, et al. Crack detection of locomotive hook tongue based on ultrasonic thermography[J]. Infrared Technology, 2020, 42(2): 158-162. http://hwjs.nvir.cn/article/id/hwjs202002009
    [13]
    徐长航, 谢静, 周乃望, 等. 新型超声红外热像无损检测实验系统研制[J]. 实验技术与管理, 2016, 33(10): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201610019.htm

    XU Changhang, XIE Jing, ZHOU Naiwang, et al. Development of a novel experimental system for structural non-destructive testing based on ultrasonic thermography[J]. Experimental Technology and Management, 2016, 33(10): 71-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJL201610019.htm
    [14]
    冯辅周, 张超省, 江鹏程, 等. 基于超声红外热像技术的装甲装备缺陷检测系统的设计与实现[J]. 光电子技术, 2012, 32(3): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS201203007.htm

    FENG Fuzhou, ZHANG Chaosheng, JIANG Pengcheng, et al. Design and implement of defect detection system for armored equipments based on ultrasonic infrared thermography[J]. Optoelectronic Technology, 2012, 32(3): 170-174. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJS201203007.htm
    [15]
    金国锋, 张炜, 宋远佳, 等. 含曲率结构裂纹的超声红外热波检测数值仿真[J]. 科学技术与工程, 2013, 13(3): 776-779. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201303048.htm

    JIN Guofeng, ZHANF Wei, SONG Yuanjia, et al. Numerical simulation for ultrasonic infrared thermal wave detecting of curvature structural crack[J]. Science Technology and Engineering, 2013, 13(3): 776-779. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201303048.htm
    [16]
    CHEN Zhaojiang, ZHENG Jiang, ZHANG Shuyi, et al. Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses[J]. Chinese Physics B, 2010, 19(11): 682-694. http://www.cqvip.com/Main/Detail.aspx?id=35788647
  • Related Articles

    [1]GUO Shuangquan, HAO Huan, WANG Yang. Infrared Image Fault Recognition Method for Disconnector Based on HOG Features[J]. Infrared Technology , 2025, 47(2): 243-249.
    [2]XU Kang, LONG Min. Feature Compression Tracking Algorithm with Enhanced Scale Estimation[J]. Infrared Technology , 2018, 40(12): 1176-1181.
    [3]ZENG Jinfa, WU Ensi, LI Nengyong. Infrared Object-Tracking Algorithm Based on Dual-kernelized Collaborative Learning[J]. Infrared Technology , 2018, 40(5): 438-443.
    [4]YANG Zhixiong, YU Chunchao, YAN Min, YUAN Xiaochun, ZENG Bangze, SU Yulu. Particle Filter Infrared Target Tracking Algorithm Based on Feature Fusion[J]. Infrared Technology , 2016, 38(3): 211-217.
    [5]WANG Jian-gang, LI Xing-fei, CHEN Cheng, TAN Wen-bin. Improved TLD Approach Applied in Optoelectronic Tracking[J]. Infrared Technology , 2015, (10): 824-830.
    [6]QI Nan-nan, JIE Fei-ran, XIE Xi, WU Wei. Ship Target Tracking Based on Tracking-Learning-Detecting Tactics[J]. Infrared Technology , 2013, (12): 780-787.
    [7]ZHU Shan-you, GONG Cai-lan, HU Yong, ZHU Ling-ya, HE Hua-ying. Comparison Between Applications of the Moment Matching and the Kalman Filter Methods in Infrared Non-uniformity Correction[J]. Infrared Technology , 2013, (11): 691-695.
    [8]Qu Hong-wei, YANG Feng-bao, LI Shen-yan. Template Updating Method Based on Kalman Filter[J]. Infrared Technology , 2008, 30(12): 709-712. DOI: 10.3969/j.issn.1001-8891.2008.12.007
    [9]YANG Wei, YANG Hua, CHAI Qi, WANG Li-ming. An Adaptive Filter Model of Object Tracking Method Based on SIFT Feature[J]. Infrared Technology , 2008, 30(7): 384-386. DOI: 10.3969/j.issn.1001-8891.2008.07.004
    [10]PAN Ping-jun, FENG Xin-xi, LI Feng, SHI Lei, LI Hong-yan. An Algorithm of Target Tracking with IRSTs Based on the Shifted Rayleigh Filter[J]. Infrared Technology , 2008, 30(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2008.06.005

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return