YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. Infrared Technology , 2021, 43(1): 8-12.
Citation: YANG Jiangtao, WANG Jianan, WANG Yin, HU Xiao. Fabrication Technology of a Subwavelength Metal Grating Polarizer[J]. Infrared Technology , 2021, 43(1): 8-12.

Fabrication Technology of a Subwavelength Metal Grating Polarizer

More Information
  • Received Date: April 08, 2020
  • Revised Date: December 27, 2020
  • Sub-wavelength periodic grating has special characteristics that are lacking in traditional grating. In this study, a flexible double-layer metal grating polarizer is designed and fabricated using a strict coupled wave method. Through nanoimprinting technology, sub-wavelength grating with a period of 278 nm, depth of 110 nm, and duty cycle of 0.5 is prepared on a square polycarbonate (PC). A 70 nm metal aluminum layer is deposited on the fabricated dielectric grating by magnetron sputtering, and a double-layer metal structure is fabricated. A flexible double-layer metal grating polarizer is developed, and the performance of the polarizer is tested using a spectrum measurement system. Experimental results showed that when the wavelength range of the incident light was 350-800 nm, the flexible double-layer grating polarizer had good polarization characteristics. The polarized light transmission efficiency and extinction ratio were as high as high as 48% and 100000, respectively. The manufacturing process involves only nanoimprinting and metal evaporation processes and thus excludes coating, stripping, and etching of the imprint adhesive. Therefore, our method exhibits evident advantages in terms of low-cost and batch production of large-area polarizers and thus can be widely used in the manufacturing process of semiconductor optoelectronic devices such as optical-detection and optoelectronic devices.
  • [1]
    Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87. DOI: 10.1126/science.272.5258.85
    [2]
    Ekinci Y, Solak H H, David C, et al. Bilayer AL wire-grids as broadband and high-performance polarizers[J]. Optics Express, 2006, 14: 2323-2334. DOI: 10.1364/OE.14.002323
    [3]
    Kim S H, Lee K D, Kim J Y, et al. Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography[J]. Nanotechnology, 2007, 18: 055306/1-5.
    [4]
    YANG Z Y, LU Y F. Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions[J]. Optics Express, 2007, 15: 9510-9519. DOI: 10.1364/OE.15.009510
    [5]
    GE Z, WU S T. Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays[J]. Applied Physics Letters, 2008, 93(12): 121104-121106. DOI: 10.1063/1.2988267
    [6]
    Ahn S H, Kim J S, Guo L J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate[J]. Journal of Vacuum Science & Technology B, 2007, 25: 2388-2391.
    [7]
    DENG S R, LU B R, DONG B Q, et al. Effective polarization control of metallic planar chiral metamaterials with complementary rosette pattern fabricated by nanoimprint lithography[J]. Microelectronic Engineering, 2010, 87: 985-988. DOI: 10.1016/j.mee.2009.11.123
    [8]
    Suyatin D B, Sun J, Fuhrer A, et al. Electrical properties of self-assembled branched InAs nanowire junctions[J]. Nano Letters, 2008(8): 1100-1104.
    [9]
    GAO C H, WANG B, FU C, et al. Polarization-controlled grating polarizer under second Bragg incidenc with silver deposited in groove[J]. Optics Communications, 2020: 459.
    [10]
    汤厚睿.氧化锌亚波长光栅偏振分束器的设计与分析[D].南京: 南京邮电大学, 2019.

    TANG H R. Design and analysis of ZnO-based sub-wavelength grating polarization beam splitter[D]. Nanjing: Nanjing University of Posts And Telecommunications, 2019.
    [11]
    张冲, 胡敬佩, 周如意, 等.深紫外光栅反常偏振器件的设计与分析[J].中国激光, 2020, 47(3): 0301005.

    ZHANG C, HU J P, ZHOU R Y, et al. Design and analysis of inverse polarization grating devices for deep ultraviolet light[J]. Chinese Journal of Lasers, 2020, 47(3): 0301005.
    [12]
    Ahn She Won, Lee Ki Dong, Kim Jin Sung, et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 2005, 16: 1874-1877. DOI: 10.1088/0957-4484/16/9/076
    [13]
    康果果, 谭桥峰, 陈伟力, 等.亚波长金属线删偏振器的设计、制备及偏振成像实验研究[J].物理学报, 2011, 60(1): 014218/1-7.

    KANG G G, TAN Q F, CHEN W L, et al. Design and fabrication of sub-wavelength metal wire-grid and its application to experimental study of polarimetric imaging[J]. Acta Physica Sinica, 2011, 60(1): 014218/1-7.
    [14]
    康宁, 唐军, 李大林, 等.亚波长金属偏振光栅设计与分析[J].传感器与微系统, 2015, 34(2): 79-84.

    KANG N, TANG J, LI D L, et al. Design and analysis of sub-wavelength metal polarization grating[J]. Transducer and Microsystem Technologies, 2015, 34(2): 79-84.
    [15]
    WU Chienli, SUNG Chengkuo, YAO Pohung, et al. Sub-15 nm linewidth gratings using roll-to-roll nanoimprinting and plasma trimming to fabricate flexible wire-grid polarizers with low colour shift[J]. Nanotechnology, 2013, 24(26): 265301/ 1-7.
    [16]
    Yamada Itsunari, Yamashita Naoto, Tani Kunihiko, et al. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass[J]. Optics Letters, 2011, 36(19): 3882-3884. DOI: 10.1364/OL.36.003882
    [17]
    常闪闪, 麻云凤, 廖利芬, 等.基于空气隙棱镜实现布鲁斯特角型偏振器消光比测量[J].红外技术, 2019, 41(9): 882-886. http://hwjs.nvir.cn/article/id/hwjs201909013

    CHANG S S, MA Y F, LIAO L F, et al. Measurement of extinction ratio of brewster angle polarizer based on air gap prism[J]. Infrared Technology, 2019, 41(9): 882-886. http://hwjs.nvir.cn/article/id/hwjs201909013

Catalog

    Article views (455) PDF downloads (69) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return