An Infrared Image Detail Enhancement Algorithm Based on Parameter Adaptive Guided Filtering
-
摘要: 图像分层滤波器中引导滤波器因其滤波保边效果好和计算复杂度低,在红外图像细节增强领域得到了广泛的研究与应用。但传统的引导滤波器固定的正则化参数ε不能在所有场景下都取得较好的滤波分层效果,所以本文提出基于局部方差的参数ε自适应算法,以提高引导滤波器场景适应性。此外本文进一步通过自适应参数ε值,提出了改进的基于噪声掩膜函数的细节层自适应增强算法,从而在有效抑制了图像噪声水平同时提高了算法在不同场景下的细节增强能力。Abstract: Of all the image layered filters, guided filter has been widely studied and applied in the field of infrared image detail enhancement because of its good edge preserving effect and low computational complexity. However, traditional fixed regularization parameter ε of the guide filter cannot achieve good filtering layering effect in all scenarios. Therefore, an adaptive algorithm of parameter ε based on local variance is proposed in this paper to improve the adaptability of the guide filter in all scenarios. In addition, an improved detail layer adaptive enhancement algorithm based on noise mask function is proposed by using the adaptive parameter ε value, which can effectively suppress the noise level and improve the detail enhancement ability of the algorithm in different scenes.
-
Key words:
- guided filtering /
- parameter adaptation /
- noise mask function /
- noise suppression /
- detail enhancement
-
表 1 各算法在3个场景下处理图像的AG值和EMEE值结果对比
Table 1. Comparison of AG values and EMEE values of images processed by each algorithm in 3 scenes
Method AGC CLAHE HALEQ BF & DRP GF & DDE Proposed Scene 1 AG 26.8014 59.8192 38.0070 95.156 78.1382 102.9149 EMEE 142.5497 264.5845 157.5203 167.1697 185.0839 249.4993 Scene 2 AG 21.9576 55.4266 29.5654 72.2097 60.2035 87.1753 EMEE 28.4475 138.0465 86.2441 135.8672 106.4596 174.7866 Scene 3 AG 25.2533 42.7458 42.9988 42.9236 37.0748 47.7793 EMEE 16.7344 43.2476 33.1936 34.8786 28.7109 45.5171 -
[1] 杨静, 李争. 一种基于双边滤波的红外图像细节增强方法[J]. 激光与红外, 2016, 46(4): 507-511. doi: 10.3969/j.issn.1001-5078.2016.04.025YANG Jing, LI Zheng. Detail enhancement method for infrared image based on bilateral filter[J]. Laser and Infrared, 2016, 46(4): 507-511. doi: 10.3969/j.issn.1001-5078.2016.04.025 [2] 金伟其, 刘斌, 范永杰, 等. 红外图像细节增强技术研究进展[J]. 红外与激光工程, 2011, 40(12): 2521-2527. doi: 10.3969/j.issn.1007-2276.2011.12.040JIN Weiqi, LIU Bin, FAN Yongjie, et al. Research progress of infrared image detail enhancement technology[J]. Infrared and Laser Engineering, 2011, 40(12): 2521-2527. doi: 10.3969/j.issn.1007-2276.2011.12.040 [3] 纪平, 胡学友, 张瑞琦, 等. 基于直方图均衡算法的图像增强技术研究[J]. 蚌埠学院学报, 2021, 10(2): 20-43. https://www.cnki.com.cn/Article/CJFDTOTAL-BBXY202102009.htmJI Ping, HU Xueyou, ZHANG Ruiqi, et al. Research on image enhancement technology based on histogram equalization algorithm[J]. Journal of Bengbu University, 2021, 10(2): 20-43. https://www.cnki.com.cn/Article/CJFDTOTAL-BBXY202102009.htm [4] Polesel A, Ramponi G, Mathews V J. Image enhancement via adaptive unsharp masking[J]. IEEE Transactions on Image Processing, 2000, 9(3): 505-510. doi: 10.1109/83.826787 [5] Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. doi: 10.1109/83.597272 [6] 吴颖谦, 施鹏飞. 基于小波变换的低对比度图像增强红外[J]. 红外与激光工程, 2003, 32(1): 4-7. doi: 10.3969/j.issn.1007-2276.2003.01.002WU Yingqian, SHI Pengfei. Approach on image contrast enhancement based on wavelet transform[J]. Infrared and Laser Engineering, 2003, 32(1): 4-7. doi: 10.3969/j.issn.1007-2276.2003.01.002 [7] ZHOU P, ZHAO B J. Novel scheme for infrared image enhancement based on contourlet transform and fuzzy theory[J]. Laser & Infrared, 2011, 41(6): 635-640. doi: 10.3969/j.issn.1001-5078.2011.06.008 [8] HE K, SUN J, TANG X. Guided Image Filtering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(6): 1397-1409. [9] SONG Q, WANG Y, BAI K. High dynamic range infrared images detail enhancement based on local edge preserving filter[J]. Infrared Physics & Technology, 2016, 77: 464-473. [10] 葛朋, 杨波. 一种基于引导滤波图像分层的红外图像细节增强算法[J]. 红外技术, 2018, 40(12): 1161-1196. http://hwjs.nvir.cn/article/id/hwjs201812008GE Peng, YANG Bo. A detailed enhancement algorithm for infrared images based on hierarchical guided filtering[J]. Infrared Technology, 2018, 40(12): 1161-1196. http://hwjs.nvir.cn/article/id/hwjs201812008 [11] 欧阳慧明, 李泽明, 周永康, 等. 非制冷红外图像动态范围压缩算法研究综述[J]. 红外技术, 2021, 43(3): 208-217. http://hwjs.nvir.cn/article/id/09092092-3317-453a-a6e3-01dff21a8e5fOUYANG Huiming, LI Zeming, ZHOU Yongkang, et al. A review of dynamic range compression algorithms for infrared images[J]. Infrared Technology, 2021, 43(3): 208-217. http://hwjs.nvir.cn/article/id/09092092-3317-453a-a6e3-01dff21a8e5f [12] Barash D, Comaniciu D. A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift[J]. Image & Vision Computing, 2004, 22(1): 73-81. [13] HE K, SUN J, TANG X. Guided Image Filtering[M]//Computer Vision – ECCV 2010. Berlin Heidelberg: Springer, 2010. [14] 朱道广, 隋修宝, 朱才高, 等. 基于多尺度的高动态红外图像增强算法[J]. 红外技术, 2013, 35(8): 476-481. http://hwjs.nvir.cn/article/id/hwjs201308005ZHU Daoguang, SUI Xiubao, ZHU Caigao, et al. High dynamic infrared image enhancement algorithm based on multi-scale[J]. Infrared Technology, 2013, 35(8): 476-481. http://hwjs.nvir.cn/article/id/hwjs201308005 [15] 樊启明. 基于滤波分层的红外图像增强算法研究[D]. 武汉: 华中科技大学, 2017.FAN Qiming. Research on Infrared Image Enhancement Algorithm Based on Filtering Layering[D]. Wuhan: Huazhong University of Science and Technology, 2017. [16] Pizer S M, Amburn E P, Austin J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vis. Graph. Image Process, 1987, 39(3): 355-368. [17] 周永康, 朱尤攀, 曾邦泽, 等. 宽动态红外图像增强算法综述[J]. 激光技术, 2018, 42(5): 718-726. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201805025.htmZHOU Yongkang, ZHU Youpan, ZENG Bangze, et al. A review for high dynamic range infrared image enhancement algorithms[J]. Laser Technology, 2018, 42(5): 718-726. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201805025.htm [18] Katsaggelos A K, Biemond J, Schafer R W, et al. A regularized iterative image restoration algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(39): 914-929. [19] Branchitta F, Diani M, Corsini G, et al. New technique for the visualization of high dynamic range infrared images[J]. Optical Engineering, 2009, 48(9): 096401. [20] LIU N, ZHAO D. Detail enhancement for high-dynamic-range infrared images based on guided image filter[J]. Infrared Physics & Technology, 2014, 67: 138-147. https://www.sciencedirect.com/science/article/pii/S1350449514001376 [21] DUAN J, Bressan M, Dance C, et al. Tone-mapping high dynamic range images by novel histogram adjustment[J]. Pattern Recognition, 2010, 43(5): 1847-1862. https://www.sciencedirect.com/science/article/pii/S0031320309004518 [22] Zuiderveld K. Contrast Limited Adaptive Histogram Equalization[M] //Graphics Gems IV, Academic Press Professional, . 1994: 474-485. [23] ZHANG F, XIE W, MA G, et al. High dynamic range compression and detail enhancement of infrared images in the gradient domain[J]. Infrared Physics & Technology, 2014, 67: 441-454. https://www.sciencedirect.com/science/article/pii/S1350449514001819 [24] Agaian S S, Silver B, Panetta K A. Transform coefficient histogram-based image enhancement algorithms contrast entropy. [J]. IEEE Transactions on Image Processing, 2007, 16(3): 741-58. https://ieeexplore.ieee.org/document/4099384 -