留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火处理对锑化铟MIS器件C-V特性的影响

周伟佳 龚晓霞 陈冬琼 肖婷婷 尚发兰 杨文运

周伟佳, 龚晓霞, 陈冬琼, 肖婷婷, 尚发兰, 杨文运. 退火处理对锑化铟MIS器件C-V特性的影响[J]. 红外技术, 2022, 44(4): 351-356.
引用本文: 周伟佳, 龚晓霞, 陈冬琼, 肖婷婷, 尚发兰, 杨文运. 退火处理对锑化铟MIS器件C-V特性的影响[J]. 红外技术, 2022, 44(4): 351-356.
ZHOU Weijia, GONG Xiaoxia, CHEN Dongqiong, XIAO Tingting, SHANG Falan, YANG Wenyun. Effect of Annealing on C-V Characteristics of InSb Metal-Insulator-Semiconductor Devices[J]. Infrared Technology , 2022, 44(4): 351-356.
Citation: ZHOU Weijia, GONG Xiaoxia, CHEN Dongqiong, XIAO Tingting, SHANG Falan, YANG Wenyun. Effect of Annealing on C-V Characteristics of InSb Metal-Insulator-Semiconductor Devices[J]. Infrared Technology , 2022, 44(4): 351-356.

退火处理对锑化铟MIS器件C-V特性的影响

详细信息
    作者简介:

    周伟佳(1997-),男,硕士研究生,主要研究领域为锑化铟红外探测器。E-mail:zhou.weijia@foxmail.com

    通讯作者:

    龚晓霞(1984-),女,高级工程师,主要从事Ⅲ-Ⅴ族红外探测器研究。E-mail:641592956@qq.com

  • 中图分类号: TN213

Effect of Annealing on C-V Characteristics of InSb Metal-Insulator-Semiconductor Devices

  • 摘要: 采用原子层沉积技术制备Al2O3薄膜作为InSb材料介电层,制备了MIS器件,研究了金属化后不同退火温度对界面特性的影响。利用C-V测试表征了MIS(metal-insulator-semiconductor)器件的界面特性,结果表明Al2O3介电层引入了表面固定正电荷,200℃和300℃退火处理可有效减小慢界面态密度,利用Terman法得到了禁带界面态密度分布,表明200℃退火可使禁带中央和导带附近的界面态密度显著减小。同时文章对C-V曲线滞回的原因进行了分析,认为Al2O3介电层中离界面较近的负体陷阱电荷是主要影响因素。实验证明了200℃~300℃的退火处理可有效改善InSb/Al2O3界面质量。
  • 图  1  有关使用不同沉积方式制备Al2O3作为光伏器件钝化层的文献的累计数量[7]

    Figure  1.  Cumulative count of literatures relating primarily to Al2O3 for surface passivation of photovoltaic devices, divided by the deposition method employed[7]

    图  2  不同退火温度的C-V特性

    Figure  2.  C-V characteristics at different annealing temperature

    图  3  不同退火温度下C-V曲线的滞回特性(实线表示从反型区开始扫描,虚线表示从积累区开始扫描)

    Figure  3.  Hysteresis C-V curves at different annealing temperature (Solid line denotes scanning from the inversion region, dotted line denotes scanning from the accumulation region)

    图  4  不同扫描方向和起始偏压的C-V曲线:(a) 从积累区开始扫描;(b) 从反型区开始扫描

    Figure  4.  C-V curves with different scanning directions and initial bias: (a) Scan from the accumulation region; (b) Scan from the inversion region

    图  5  高频C-V曲线的测量值和模拟值

    Figure  5.  Measured and simulated high frequency C-V curves

    图  6  理想栅电压与表面势的关系曲线

    Figure  6.  Ideal relationship curve of gate voltage and surface potential

    图  7  界面态密度在禁带中的分布(相对于本征费米能级Ei

    Figure  7.  Interface state density as a function of energy in the bandgap(relative to the intrinsic Fermi level Ei)

    表  1  样品对应的退火条件

    Table  1.   Annealing conditions corresponding to the sample

    Sample Annealing conditions
    #1 Without annealing(w/o PMA)
    #2 200℃, 5 min(PMA@200℃)
    #3 300℃, 5 min(PMA@300℃)
    下载: 导出CSV

    表  2  不同退火条件的平带电压及对应的固定电荷的大小

    Table  2.   Flat band voltage and fixed surface charge density at different annealing conditions

    w/o PMA PMA
    @200℃
    PMA
    @300℃
    VFB/V 0.82 −3.2 −3
    Qf /cm−2 −8.4716×1011 2.8823×1012 2.7466×1012
    下载: 导出CSV

    表  3  不同退火条件的滞回电压及慢界面态密度

    Table  3.   Voltage hysteresis and slow interface states density at different annealing conditions

    w/o PMA PMA
    @200℃
    PMA
    @300℃
    VFB/V 6.75 5.8 3.6
    Ntrap/cm−2 4.2×1012 3.6×1012 2.2×1012
    下载: 导出CSV
  • [1] 周冠山. 光伏型锑化铟红外探测器零偏结阻抗结面积乘积的分析[J]. 航空兵器, 1999(1): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ199901003.htm

    ZHOU G S. Analysis of zero bias junction impedance and junction area product of photovoltaic InSb infrared detector[J]. Aero Weaponry, 1999(1): 10-17 https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ199901003.htm
    [2] Bennett B R, Ancona M G, Boos J B. Compound semiconductors for low-power p-channel field-effect transistors[J]. MRS Bulletin, 2009, 34(7): 530-536. doi:  10.1557/mrs2009.141
    [3] Pawlowski J, Szumniak P, Bednarek S. Electron spin rotations induced by oscillating Rashba interaction in a quantum wire[J]. Physical Review B, 2016, 93(4): 045309. doi:  10.1103/PhysRevB.93.045309
    [4] CHEN Y, HUANG S, PAN D, et al. Strong and tunable spin-orbit interaction in a single crystalline InSb nanosheet[J]. Npj 2D Materials and Applications, 2021, 5(1): 1-8. doi:  10.1038/s41699-020-00190-0
    [5] 常虎东. 高迁移率InGaAs沟道MOSFET器件研究[D]. 北京: 中国科学院大学, 2013.

    CHANG H D. Research on High Mobility InGaAs Channel MOSFET Devices[D]. Beijing: University of Chinese Academy of Sciences, 2013.
    [6] Trinh H D, Nguyen M T, Lin Y C, et al. Band alignment parameters of Al2O3/InSb metal-oxide-semiconductor structure and their modification with oxide deposition temperatures[J]. Applied Physics Express, 2013, 6(6): 1-3.
    [7] Black L E. New Perspectives on Surface Passivation: Understanding the Si-Al2O3 Interface[D]. Canberra: The Australian National University, 2015.
    [8] Baik M, Kang H K, Kang Y S, et al. Electrical properties and thermal stability in stack structure of HfO2/Al2O3/InSb by atomic layer deposition[J]. Scientific Reports, 2017, 7(1): 1-11. doi:  10.1038/s41598-016-0028-x
    [9] Kim H S, Ok I, ZHANG M, et al. A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer[J]. Applied Physics Letters, 2008, 93(6): 062111. doi:  10.1063/1.2972107
    [10] Vavasour O J, Jefferies R, Walker M, et al. Effect of HCl cleaning on InSb-Al2O3 MOS capacitors[J]. Semiconductor Science and Technology, 2019, 34(3): 035032. doi:  10.1088/1361-6641/ab0331
    [11] Luc Q H, CHANG E Y, Trinh H D, et al. Effect of annealing processes on the electrical properties of the atomic layer deposition Al2O3/In0.53Ga0.47As metal oxide semiconductor capacitors[J]. Japanese Journal of Applied Physics, 2014, 53(4S): 04EF04. doi:  10.7567/JJAP.53.04EF04
    [12] Vavasour O J. Dielectrics for Narrow Bandgap Ⅲ-Ⅴ Devices[D]. Coventry: University of Warwick, 2018.
    [13] Winter R, Ahn J, Mcintyre P C, et al. New method for determining flat-band voltage in high mobility semiconductors[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 2013, 31(3): 0604.
    [14] McNutt M, Sah C T. Determination of the MOS oxide capacitance[J]. Journal of Applied Physics, 1975, 46(9): 3909-3913. doi:  10.1063/1.322138
    [15] Walstra S V, Sah C T. Extension of the McNutt-Sah method for measuring thin oxide thicknesses of MOS devices[J]. Solid State Electronics, 1998, 4(42): 671-673.
    [16] Maserjian J, Petersson G, Svensson C. Saturation capacitance of thin oxide MOS structures and the effective surface density of states of silicon[J]. Solid-state Electronics, 1974, 17: 335-339. doi:  10.1016/0038-1101(74)90125-7
    [17] Riccò B, Olivo P, Nguyen T, et al. Oxide-thickness determination in thin-insulator MOS structures[J]. IEEE Transactions on Electron Devices, 1988, 35(4): 432-438. doi:  10.1109/16.2476
    [18] WEI D. Study of High Dielectric Constant Oxides on GaN for Metal Oxide Semiconductor Devices[D]. Manhattan: Kansas State University, 2014.
    [19] Lee W C, Cho C J, Choi J H, et al. Correct extraction of frequency dispersion in accumulation capacitance in InGaAs metal-insulator -semiconductor devices[J]. Electronic Materials Letters, 2016, 12(6): 768-772. doi:  10.1007/s13391-016-6226-7
    [20] Taoka N, Yokoyama M, Kim S H, et al. Influence of interface traps inside the conduction band on the capacitance-voltage characteristics of InGaAs metal-oxide-semiconductor capacitors[J]. Applied Physics Express, 2016, 9(11): 111202. doi:  10.7567/APEX.9.111202
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  31
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 修回日期:  2021-10-18
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回