留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微腔调节顶发射单色绿光OLED微显示器件色纯度研究

秦国辉 于晓辉 钱福丽 段瑜 杨启鸣 芶国汝

秦国辉, 于晓辉, 钱福丽, 段瑜, 杨启鸣, 芶国汝. 光学微腔调节顶发射单色绿光OLED微显示器件色纯度研究[J]. 红外技术, 2022, 44(7): 652-658.
引用本文: 秦国辉, 于晓辉, 钱福丽, 段瑜, 杨启鸣, 芶国汝. 光学微腔调节顶发射单色绿光OLED微显示器件色纯度研究[J]. 红外技术, 2022, 44(7): 652-658.
QIN Guohui, YU Xiaohui, QIAN Fuli, DUAN Yu, YANG Qiming, GOU Guoru. Improvement of Color Purity of Organic Monochromatic Green Top-emitting Micro-display Devices by Using Optical Microcavity[J]. Infrared Technology , 2022, 44(7): 652-658.
Citation: QIN Guohui, YU Xiaohui, QIAN Fuli, DUAN Yu, YANG Qiming, GOU Guoru. Improvement of Color Purity of Organic Monochromatic Green Top-emitting Micro-display Devices by Using Optical Microcavity[J]. Infrared Technology , 2022, 44(7): 652-658.

光学微腔调节顶发射单色绿光OLED微显示器件色纯度研究

基金项目: 

云南省技术创新人才培养项目 2017HB111

云南省技术创新人才培养项目 2018CX069SQ

详细信息
    作者简介:

    秦国辉(1987-),男,云南曲靖人,硕士,主要从事OLED器件性能测试。E-mail: qinguohui@oleid.com

    通讯作者:

    段瑜(1981-),女,云南曲靖人,研究员级高级工程师,硕士,主要从事OLED器件开发。E-mail:duanyu@oleid.com

  • 中图分类号: TN214

Improvement of Color Purity of Organic Monochromatic Green Top-emitting Micro-display Devices by Using Optical Microcavity

  • 摘要: 有机电致发光器件的发光颜色与色纯度在很大程度上受限于有机材料本身特性,而通过光学微腔效应可以从器件结构的改变来进行色纯度的调节。本文介绍了一种通过调节有机结构中空穴传输层和电子阻挡层厚度,从而改变器件微腔腔长,获得高纯度顶发射单色发光器件的方法。利用这种方法制作的有机顶发射绿色磷光器件结构为Si Substrate/Ag/ITO/ NPB: F16CuPc(10 nm, 3%)/NPB(x nm)/ TCTA(y nm)/ mCP: Ir(ppy)3(40 nm, 6%)/ Bphen: Liq(30 nm, 40%)/Mg: Ag(12 nm, 10%)/Alq3(35 nm),改变NPB和TCTA的厚度,获得了高色纯度发光器件,正向出射绿光的色坐标达到(0.2092,0.7167),接近标准绿光(0.21, 0.71)。
  • 图  1  器件中涉及的有机材料分子结构

    Figure  1.  Molecular structures of the materials in the OLED devices

    图  2  5种不同微腔长度器件结构图

    Figure  2.  Schematics of device structure with five microcavity lengths

    图  3  不同腔长器件EL光谱

    Figure  3.  EL spectrum of device with different cavity lengths

    图  4  不同腔长器件色坐标变化

    Figure  4.  Color coordinate variation of device with different cavity lengths

    图  5  不同HTL&EBL厚度器件EL光谱

    Figure  5.  EL spectra of device with different HTL&EBL thickness

    图  6  HTL&EBL厚度对色坐标影响

    Figure  6.  Color coordinate variation of device with different HTL&EBL thickness

    表  1  器件主要膜层及所用材料

    Table  1.   Layers and materials of device

    Layer Material
    anode ITO
    HIL Copper(II)1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25-hexadecafluoro-29H, 31H-phthalocyanine(F16CuPc)
    N, N'-Di-[(1-naphthyl)-N, N'-diphenyl]-1, 1'-biphenyl)-4, 4'-diamine (NPB)
    HTL N, N'-Di-[(1-naphthyl)-N, N'-diphenyl]-1, 1'-biphenyl)-4, 4'-diamine (NPB)
    EBL 4, 4', 4''-tris(carbazol-9-yl)-triphenylamine (TCTA)
    EML 1, 3-bis(9-carbazolyl)benzene(mCP)
    Iridium, tris[2-(2-pyridinyl-kN)phenyl-kC](Ir(ppy)3
    ETL 4, 7-Diphenyl-1, 10-phenanthroline(Bphen)
    8-hydroxyquinoline lithium(Liq)
    cathode Mg/Ag
    CPL 8-Hydroxyquinoline aluminum salt(Alq3
    下载: 导出CSV

    表  2  不同腔长器件的光电特性

    Table  2.   Optoectronic performance of device with different cavity lengths

    Device Luminance/(cd/m2) Current efficiency/(cd/A) Peak wavelength/nm FWHM/nm External quantum efficiency/% CIEx, y Color shift[CIE 1931]
    A 6330 33.80 524 73 9.19% (0.3713, 0.6019) (0.1613, 0.1081)
    B 7439 39.73 524 70 10.59% (0.3601, 0.6110) (0.1501, 0.0990)
    C 2198 11.74 524 84 3.39% (0.3959, 0.5821) (0.1859, 0.1279)
    D 9123 48.72 524 66 12.75% (0.3436, 0.6243) (0.1336, 0.0857)
    E 5477 29.25 520 33 7.67% (0.2092, 0.7167) (0.0008, 0.0067)
    下载: 导出CSV

    表  3  不同HTL & EBL厚度器件的光电特性

    Table  3.   Optoectronic performance of device with different HTL & EBL thickness

    Device Luminance/(cd/m2) Current efficiency/(cd/A) Peak wavelength/nm FWHM/nm External quantum efficiency/% CIEx, y Color shift[CIE 1931]
    E 5477 29.25 520 33 7.67 (0.2092, 0.7167) (0.0008, 0.0067)
    E1 5261 28.09 520 32 7.58 (0.2079, 0.7173) (0.0021, 0.0073)
    下载: 导出CSV
  • [1] 段炼, 邱勇. 有机发光材料与器件研究进展[J]. 材料研究学报, 2015, 29(5): 321-336. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201505001.htm

    DUAN Lian, QIU Yong. Recent advances in organic electroluminescent materials and devices[J]. Chinese Journal of Materials Research, 2015, 29(5): 321-336. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201505001.htm
    [2] CHENG Tianyou, LEE Jiunhaw, CHEN Chiahsum, et al. Carrier transport and recombination mechanism in blue phosphorescent organic light-emitting diode with hosts consisting of Cabazole- and Triazole-Moiety[J]. Scientific Reports, 2019, 9(1): 3612-3654. doi:  10.1038/s41598-019-40340-z
    [3] LEE Jaejin, LI Peicheng, KUNG Haoting, et al. Highly efficient top-emission organic light-emitting diode on an oxidized aluminum anode[J]. Journal of Applied Physics, 2019, 125(14): 145501. doi:  10.1063/1.5092979
    [4] SIM Y, LEE H, JUNG H, et al. Hybrid white organic light emitting diodes using dual core blue fluorescent emitter [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(2): 1141-1144. doi:  10.1166/jnn.2019.15968
    [5] Thomschke M, Nitsche R, Furno M, et al. Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes [J]. Applied Physics Letters, 2009, 94(8): 83303. doi:  10.1063/1.3088854
    [6] 林雯嫣, 陈宁, 吴志军, 等. 基于B3PyMPM: Cs高效叠层OLED器件的制备[J]. 光子学报, 2020, 49(1): 0123003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202001004.htm

    LIN Wenyan, CHEN Ning, WU Zhijun, et al. Preparation of highly-efficient tandem OLED based on B3PyMPM∶Cs[J]. Acta Photonica Sinica, 2020, 49(1): 0123003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202001004.htm
    [7] Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature, 2012, 492(7428): 234-238. doi:  10.1038/nature11687
    [8] ZHAO Yongbiao, CHEN Jiangshan, MA Dongge. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic Light-Emitting diodes [J]. ACS Applied Materials & Interfaces, 2013, 5(3): 967‒971.
    [9] ZHAO Bo, SU Zisheng, LI Wenlian, et al. High efficient white organic light-emitting diodes based on triplet multiple quantum well structure [J]. Applied Physics Letters, 2012, 101(5): 053310. doi:  10.1063/1.4742739
    [10] Nakayama T, Itoh Y, Kakuta A. Organic photo- and electroluminescent devices with double mirrors[J]. Applied Physics Letters, 1993, 63(5): 594-595. doi:  10.1063/1.109959
    [11] Takada N, Tsutsui T, Saito S. Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure[J]. Applied Physics Letters, 1993, 63(15): 2032-2034. doi:  10.1063/1.110582
    [12] MAN J X, HE S J, SHI C S, et al. Optical design of connecting electrodes for tandem organic light-emitting diodes [J]. Optics Letters, 2020, 45(13): 3561-3564. doi:  10.1364/OL.388303
    [13] CHEN Shufen, ZHAO Zhenyuan, JIE Zhonghai, et al. A green top-emitting organic light-emitting device with improved luminance and efficiency [J]. Journal of Physics D: Applied Physics, 2006, 39(17): 3738-3741. doi:  10.1088/0022-3727/39/17/004
    [14] CHEN Shufen, LI Xue, XIE Wenfa, et al. Improved performances in a top-emitting green organic light-emitting device with light magnification [J]. Thin Solid Films, 2008, 516(10): 3364-3367. doi:  10.1016/j.tsf.2007.08.120
    [15] Hofmann S, Thomschke M, Freitag P, et al. Top-emitting organic light-emitting diodes Influence of cavity design [J]. Applied Physics Letters, 2010, 97(25): 253308. doi:  10.1063/1.3530447
    [16] Song Y H, Park M J, Pode R, et al. High efficiency top-emission organic light emitting diodes with second and third-order microcavity structure [J]. ECS Journal of Solid State Science and Technology, 2016, 5(1): R3131-R3137. doi:  10.1149/2.0151601jss
    [17] Deppe D G, LEI C, LIN C C, et al. Spontaneous emission from planar microstructures[J]. Mod. Opt., 1994(41): 325-344.
    [18] Thomschke M, Nitsche R, Furno M, et al. Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes[J]. Appl. Phys. Lett, 2009(94): 083303.
    [19] CHO H, YUN C, YOO S. Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics[J]. Opt. Express, 2010(18): 3404-3414.
    [20] JI Wenyu, ZHANG Letian, ZHANG Tianyu, et al. Top-emitting white organic light-emitting devices with a one-dimensional metallic-dielectric photonic crystal anode [J]. Optics Letters, 2009, 34(18): 2703-2705. doi:  10.1364/OL.34.002703
    [21] 张春玉, 刘星元, 马凤英, 等. 有机微腔绿色发光二极管[J]. 光学学报, 2006(1): 111-115. doi:  10.3321/j.issn:0253-2239.2006.01.022

    ZHANG Chunyu, LIU Xingyuan, MA Fengying, et al. Organic microcavity green color light emitting diode [J]. Acta Optica Sinica, 2006(1): 111-115. doi:  10.3321/j.issn:0253-2239.2006.01.022
    [22] 张娟, 焦志强, 闫华杰, 等. 微腔效应对顶发射串联蓝光有机电致发光器件性能的影响[J]. 物理学报, 2020, 69(9): 229-243. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202009025.htm

    ZHANG Juan, JIAO Zhiqiang, YAN Huajie, et al. Influence of microcavity effect on the performance of top emission tandem blue organic light emitting device [J]. Acta Physica Sinica, 2020, 69(9): 229-243. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202009025.htm
    [23] MAN J X, HE S J, SHI C S, et al. Optical design of connecting electrodes for tandem organic light-emitting diodes [J]. Optics Letters, 2020, 45(13): 3561-3564. doi:  10.1364/OL.388303
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  25
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-06-29
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回