留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HOT器件用旋转式斯特林制冷机研究进展

赵文丽 李昊岚 孙皓 黄伟 李仁智 环健 陈军 张应旭 徐睿驹

赵文丽, 李昊岚, 孙皓, 黄伟, 李仁智, 环健, 陈军, 张应旭, 徐睿驹. HOT器件用旋转式斯特林制冷机研究进展[J]. 红外技术, 2023, 45(2): 195-201.
引用本文: 赵文丽, 李昊岚, 孙皓, 黄伟, 李仁智, 环健, 陈军, 张应旭, 徐睿驹. HOT器件用旋转式斯特林制冷机研究进展[J]. 红外技术, 2023, 45(2): 195-201.
ZHAO Wenli, LI Haolan, SUN Hao, HUANG Wei, LI Renzhi, HUAN Jian, CHEN Jun, ZHANG Yingxu, XU Ruiju. Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors[J]. Infrared Technology , 2023, 45(2): 195-201.
Citation: ZHAO Wenli, LI Haolan, SUN Hao, HUANG Wei, LI Renzhi, HUAN Jian, CHEN Jun, ZHANG Yingxu, XU Ruiju. Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors[J]. Infrared Technology , 2023, 45(2): 195-201.

HOT器件用旋转式斯特林制冷机研究进展

详细信息
    作者简介:

    赵文丽(1994-),工程师,主要研究方向:旋转式斯特林低温制冷机的研发与生产。E-mail:zwl106@outlook.com

    通讯作者:

    孙皓(1979-),博士,研究员级高级工程师,主要研究方向:低温斯特林制冷机的研发与生产。E-mail:652700@sina.com

  • 中图分类号: TB651

Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors

  • 摘要: 随着碲镉汞(mercury cadmium telluride,MCT)材料制备工艺的改进和提升,芯片组件的暗电流得到一定程度的抑制,红外探测器芯片组工作温度上升成为发展趋势。高工作温度(high operation temperature)器件的发展推动着小型低温斯特林制冷机向更小尺寸(size)、更小重量(weight)、更低功耗(power)、更低成本(price)、更好性能(performance)的方向发展。本文介绍了HOT器件用斯特林制冷机的SWaP3设计理念,薄壁管短冷指、高效小尺寸控制器、综合热管理、可靠性预测等设计技术,总结了近年国内外HOT器件用旋转式斯特林制冷机的研制进展。
  • 图  1  不同材料的冷指管从300 K到95 K的热负载大小

    Figure  1.  Cold finger heat load from 300 K to 95 K derived from different tube materials

    图  2  不同材料的冷指管从300 K到150 K的热负载大小

    Figure  2.  Cold finger heat load from 300 K to 150 K derived from different tube materials

    图  3  K562S short & K562S制冷机

    Figure  3.  K562S short & K562S cryocooler and controller image

    图  4  K562S short & K562S制冷机外形图

    Figure  4.  K562S short and K562S cryocooler profile

    图  5  K562SI制冷机外形图

    Figure  5.  K562SI cryocooler profile

    图  6  K562SI制冷机实物

    Figure  6.  K562SI cryocooler and controller image

    图  7  K580制冷机外形图

    Figure  7.  K580 cryocooler profile

    图  8  RM1制冷机外形图

    Figure  8.  RM1 cryocooler profile

    表  1  HOT器件用制冷机控制器主要特性

    Table  1.   Main characteristics of the cryocooler controller of HOT detector

    Cryocooler Traditional controller RICOR K580 HOT controller
    Controller type Digital/Analog Digital Digital
    Efficiency 80% > 80% > 90%
    Input Voltage 12-24 V 4-16 V Work with a wide operation voltage
    Temperature drift ±0.6 K ±0.2 K > ±0.1 K
    Temperature stability ±3 K ±0.1 K > ±0.2
    Weight 120 g 30 g <30 g
    下载: 导出CSV

    表  2  HOT器件用旋转式斯特林制冷机

    Table  2.   Micro-rotary Stirling cryocoolers for high operating temperature applications

    RICOR RICOR RICOR
    K562S SHORT K562S K562SI
    Cooling capacity 400 mW@150 K,71℃ 350 mW@110 K, 71℃ 500 mW@150 K, 71℃
    Cooldown time 3.5 min@150 J, 150 K 4 min@160 J, 110K 3.5 min@150 J, 150 K
    Power operation 12 V 12 V 12 V
    Input power 2.6 W@185 mW, 150 K 3 W@200 mW, 110 K 2.5 W@200 mW, 150 K
    Maximum input power 12 W 14 W 11 W
    Weight 215 g 215 g 215 g
    MTTF 17000 h 12000 h 17000 h
    Temperature range -40℃-+71℃ -40℃-+71℃ -40℃-+71℃
    RICOR THALES GUIDE INFRARED
    K580 RM1 RS046H
    Cooling capacity 600 mW@150 K, 71℃ 420 mW@110 K, 20℃ > 400 mW@100 K, 20℃
    Cooldown time 3 min@150 J, 150 K 4.5 min@110 J, 110 K < 5min@110J@100K, 20℃
    Power operation 4-16 V 12 V 24-32 V
    Input power 1.5 W@150 mW, 150K 2.9 W@100 mW, 110K < 3.5 W@130 mW, 100K
    Maximum input power 10 W 10 W < 12 W
    Weight 210 g 250 g < 260 g
    MTTF 16000 h 24000 h > 10000 h
    Temperature range -40℃-+71℃ -40℃-+71℃ -45℃-+85℃
    下载: 导出CSV
  • [1] CHEN Xiaoping, SUN Hao, NIE Xiliang, et al. Overview of micro-miniature stirling cryocoolers for high temperature applications[C]// International Cryocooler Conference (ICC19), 2016: 115-120.
    [2] 孙皓, 陈晓屏, 乔勇. 小型斯特林制冷机的航空应用与发展趋势[J]. 红外技术, 2015, 37(11): 906-910. http://hwjs.nvir.cn/article/id/hwjs201511002

    SUN Hao, CHEN Xiaoping, QIAO Yong. A review of micro stirling cooler for aero[J]. Infrared Technology, 2015, 37(11): 906-910. http://hwjs.nvir.cn/article/id/hwjs201511002
    [3] 习中立, 陈军, 陈晓屏, 等. HOT器件用自由活塞斯特林制冷机研究进展[J]. 真空与低温, 2018, 24(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201803003.htm

    XI Zhongli, CHEN Jun, CHEN Xiaoping, et al. Overview of free piston stirling cryocoolers for HOT detectors[J]. Vacuum and Cryogenics, 2018, 24(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201803003.htm
    [4] 王忆锋, 刘萍. 论高工作温度碲镉汞红外探测器(下) [J]. 红外, 2019, 35(9): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201410002.htm

    WANG Yifeng, LIU Ping. On the high operating temperature mercury cadmium telluride infrared detector[J]. Infrared, 2019, 35(9): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201410002.htm
    [5] 王忆锋, 刘萍. 论高工作温度碲镉汞红外探测器_上_王忆锋[J]. 红外, 2019, 35(9): 1-8.

    WANG Yifeng, LIU Ping. On the high operating temperature mercury cadmium telluride infrared detector[J]. Infrared, 2019, 35(9): 1-8.
    [6] Riabzev S V, Radchenko D, Raf D, et al. Ricor's new development of HOT cryocoolers: compact cost-effective linear model[C] //Proc of SPIE on Infrared Technology and Applications XLV, 2019: 11002: DOI: 10.1117/12.2520842.
    [7] Nussberger M, Zehner S, Withopf A, et al. Update on AIM HOT cooler developments[C]//Proc. SPIE on Infrared Technology and Applications XLV, 2019: 11002: DOI: 10.1117/12.2520488.
    [8] 孙皓, 陈晓屏. HOT微型斯特林制冷机技术分析[C] //第三届新型光电探测技术及其应用研讨会会议论文集, 2016: 115-119.

    SUN Hao, CHEN Xiaoping. Analysis of miniature Stirling cooler for high operating temperature application[C] //Proceedings of the 3rd Symposium on Novel Photoelectronic Detection Technology and Application, 2016: 115-119.
    [9] Filis A, Bar haim Z, Havatzelet T, et al. Ricor's rotary cryocoolers development and optimization for HOT IR detectors [C] //Proc. Of SPIE Infrared Technology and Applications XXXVIII, 2012: 8353: DOI: 10.1117/12.923835.
    [10] Amiram katz Victor-Segal, Avishai-Filis. RICOR's cryocoolers development and optimization for HOT IR detectors[C]// Proc. of SPIE on Infrared Technology and Applications XL, 2014, 9070: DOI: 10.1117/12.2050317.
    [11] David O B, Carmiel M, Segal V, et al. Ricor's advanced rotary cryocooler for HOT IR detectors[C]//Proc. Of SPIE on Infrared Technology and Applications XLV, 2019, 11002: DOI: 10.1117/12.2517715
    [12] Nachman I, Riabzev S, Filis A, et al. Advanced Ricor cryocoolers for high-end IR missile warning systems and ruggedized platforms[C] // Proc. of SPIE on Infrared Technology and Applications XLI., 2015, 9451: DOI: 10.1117/12.2176019.
    [13] Jean Yves Martin, Jean Marc Cauquil, Tonny Benschop, et al. Thales cryogenics rotary cryocoolers for HOT applications[C] //Proc. of SPIE on Infrared Technology and Applications XXXVIII, 2012, 8353: DOI: 10.1117/12.918587.
    [14] Pundak N, Porat Z, Barak M, et al. Field reliability of Ricor microcoolers [C]// Proc. Of SPIE on Infrared Technology and Applications XXXV, 2009, 7298: DOI: 10.1117/12.816262.
    [15] Zvi Porat, A Sne-Or, Nachman Pundak, et al. Reliability assessment procedure of cryocoolers[C]// Proc of SPIE on Infrared Technology and Applications XXIV, 1998, 3436: DOI: 10.1117/12.328031.
    [16] Groep W, Weijden H, Leeuwen R V, et al. Update on MTTF figures for linear and rotary coolers of Thales cryogenics[C] //Proc. SPIE on Infrared Technology and Applications XXXVIII, 2012, 8353: DOI: 10.1117/12.918245.
    [17] Katz A, Bar Haim Z, Riabzev S, et al. Development and optimization progress with RICOR cryocoolers for HOT IR detectors[C] //Proc. of SPIE on Infrared Technology and Applications XLI, 2015: 9451: DOI: 10.1117/12.2176016.
    [18] Levin E, Katz A, Haim Z B, et al. RICOR cryocoolers for HOT IR detectors from development to optimization for industrialized production[C] //Proc. of SPIE on Tri-Technology Device Refrigeration (TTDR) Ⅱ. 2017, 10180: DOI: 10.1117/12.2262334.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  35
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-12-17
  • 刊出日期:  2023-02-20

目录

    /

    返回文章
    返回