留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DeepLabv3+网络的电流互感器红外图像分割方法

袁刚 许志浩 康兵 罗吕 张文华 赵天成

袁刚, 许志浩, 康兵, 罗吕, 张文华, 赵天成. 基于DeepLabv3+网络的电流互感器红外图像分割方法[J]. 红外技术, 2021, 43(11): 1127-1134.
引用本文: 袁刚, 许志浩, 康兵, 罗吕, 张文华, 赵天成. 基于DeepLabv3+网络的电流互感器红外图像分割方法[J]. 红外技术, 2021, 43(11): 1127-1134.
YUAN Gang, XU Zhihao, KANG Bing, LUO Lyu, ZHANG Wenhua, ZHAO Tiancheng. DeepLabv3+ Network-based Infrared Image Segmentation Method for Current Transformer[J]. Infrared Technology , 2021, 43(11): 1127-1134.
Citation: YUAN Gang, XU Zhihao, KANG Bing, LUO Lyu, ZHANG Wenhua, ZHAO Tiancheng. DeepLabv3+ Network-based Infrared Image Segmentation Method for Current Transformer[J]. Infrared Technology , 2021, 43(11): 1127-1134.

基于DeepLabv3+网络的电流互感器红外图像分割方法

基金项目: 

吉林省电力科学研究院有限公司科技项目 KY-GS-20-01-07

详细信息
    作者简介:

    袁刚(1997-),男,贵州盘州人,硕士研究生,研究方向为电力设备故障检测与诊断。E-mail: 862635457@qq.com

    通讯作者:

    许志浩(1988-),男,湖北武汉人,讲师,博士,硕导,研究方向为电力设备智能检测与人工智能应用。E-mail: zhxuhi@whu.edu.cn

  • 中图分类号: TN219;TM452

DeepLabv3+ Network-based Infrared Image Segmentation Method for Current Transformer

  • 摘要: 红外图像智能分析是变电设备故障诊断的一种有效方法,目标设备分割是其关键技术。本文针对复杂背景下电流互感器整体分割难的问题,采用基于ResNet50的DeepLabv3+神经网络,用电流互感器的红外图像训练语义分割模型的方法,对收集到的样本采用限制对比度自适应直方图均衡化方法实现图像轮廓增强,构建样本数据集,并运用图像变换扩充样本数据集,搭建语义分割网络训练语义分割模型,实现电流互感器像素与背景像素的二分类。通过文中方法对420张电流互感器红外图像测试,结果表明,该方法的平均交并比(Mean Intersection over Union, MIoU)为87.5%,能够从测试图像中精确分割出电流互感器设备,为后续电流互感器的故障智能诊断做铺垫。
  • 图  1  Conv Block与Identity Block的结构

    Figure  1.  Structure of Conv Block and Identity Block

    图  2  DeepLabv3+结构图

    Figure  2.  DeepLabv3+ structure diagram

    图  3  图像增强及对应直方图

    Figure  3.  Image enhancement and corresponding histogram

    图  4  数据集中原图与标签图

    Figure  4.  Original image and label image in dataset

    图  5  原图像数据集与扩充数据

    Figure  5.  Original image dataset and extended data

    图  6  基于Resnet50的DeepLabv3+网络模型训练过程

    Figure  6.  Training process of DeepLabv3+ network model based on ResNet50

    图  7  分割图像

    Figure  7.  Model segmentation and post-processing image

    图  8  语义分割后处理图像

    Figure  8.  Semantic segmentation after image processing

    表  1  多种模型测试数据表

    Table  1.   Test data table of various models

    Model Categories Accuracy IoU MIoU
    DeepLabv3+(ResNet50) CT 0.86 0.77 0.855
    Background 0.95 0.94
    DeepLabv3+(ResNet18) CT 0.81 0.72 0.81
    Background 0.92 0.90
    SegNet CT 0.67 0.44 0.615
    Background 0.86 0.79
    FCN-8s CT 0.75 0.63 0.74
    Background 0.89 0.85
    下载: 导出CSV

    表  2  基于ResNet50的DeepLabv3+模型加入后处理前后测试对比

    Table  2.   Comparison of tests before and after the addition of the DeepLabv3+ model based on ResNet50

    Model Categories Accuracy IoU MIoU
    DeepLabv3+(ResNet50) CT 0.86 0.77 0.855
    Background 0.95 0.94
    Our algorithm CT 0.87 0.79 0.875
    Background 0.97 0.96
    下载: 导出CSV
  • [1] 王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004

    WANG Xiaofang, MAO Huamin. Infrared Image Segmentation Method for Power Equipment in Complex Background[J]. Infrared Technology, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
    [2] GONG X, YAO Q, WANG M, et al. A deep learning approach for oriented electrical equipment detection in thermal images[J]. IEEE Access, 2018: 1-1. Doi:  10.1109/ACCESS.2018.2859048.
    [3] 康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016.

    KANG Long. Substation equipment fault diagnosis based on infrared image processing[D]. Beijing: North China Electric Power University, 2016.
    [4] 曾亮. 基于红外图像的变电站设备故障精准定位方法的研究[D]. 重庆: 重庆理工大学, 2019.

    ZENG Liang. Research on precise fault location method of substation equipment based on infrared image[D]. Chongqing: Chongqing University of Technology, 2019.
    [5] ZOU H, HUANG F. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography[J]. Infrared Physics & Technology, 2015, 73: 29-35. http://www.onacademic.com/detail/journal_1000038244612810_35a3.html
    [6] 王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm

    WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm
    [7] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201516013.htm

    LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 43(16): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201516013.htm
    [8] 刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm

    LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infraredimages of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm
    [9] 王晨. 基于深度学习的红外图像语义分割技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017.

    WANG Chen. Research on infrared image semantic segmentation technology based on deep learning[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2017.
    [10] 邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12-21, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201919003.htm

    KUANG Huiyu, WU Junjun. Survey of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 12-21, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201919003.htm
    [11] LONG J, Shelhamer E, Darrell T. Fully convolutional net-works for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
    [12] 袁铭阳, 黄宏博, 周长胜. 全监督学习的图像语义分割方法研究进展[J]. 计算机工程与应用, 2021, 57(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202104007.htm

    YUAN Mingyang, HUANG Hongbo, ZHOU Changsheng. Research progress of image semantic segmentation based on fully supervised learning[J]. Computer Engineering and Applications, 2021, 57(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202104007.htm
    [13] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495, DOI: 10.1109/TPAMI.2016.2644615.
    [14] Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A review on deep learning techniques applied to semantic segmentation[J/OL]. Computer Vision and Pattern Recognition, 2017. https://arxiv.org/abs/1704.06857.
    [15] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[J/OL]. Computer Vision and Pattern Recognition, 2016. https://arxiv.org/abs/1602.07261.
    [16] CHEN L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi:  10.1109/TPAMI.2017.2699184
    [17] 刘致驿, 孙韶媛, 任正云, 等. 基于改进DeepLabv3+的无人车夜间红外图像语义分割[J]. 应用光学, 2020, 41(1): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202001031.htm

    LIU Zhiyi, SUN Shaoyuan, REN Zhengyun, et al. Semantic segmentation of nocturnal infrared images of unmannedvehicles based on improved DeepLabv3+[J]. Journal of Applied Optics, 2020, 41(1): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202001031.htm
    [18] 于天河, 赵树梅, 兰朝凤. 结合视觉特性的红外图像增强方法[J]. 激光与红外, 2020, 50(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202001024.htm

    YU Tianhe, ZHAO Shumei, LAN Chaofeng. Infrared image enhancement method combining visual characteristics[J]. Laser & Infrared, 2020, 50(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202001024.htm
    [19] Zuiderveld Karel. Contrast Limited Adaptive Histograph Equalization[J]. Graphic Gems IV. San Diego: Academic Press Professional, 1994: 474-485. DOI:  10.1016/B978-0-12-336156-1.50061-6.
    [20] WONG S C, Gatt A, Stamatescu V, et al. Understanding data augmentation for classification: when to warp?[C/OL]//International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2016. https://arxiv.org/pdf/1609.08764.pdf.
    [21] Csurka G, Larlus D, Perronnin F. What is a good evaluation measure for semantic segmentation?[C/OL]//BMVC, 2013. http://www.bmva.org/bmvc/2013/Papers/paper0032/abstract0032.pdf.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  61
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-02
  • 修回日期:  2021-10-16
  • 刊出日期:  2021-11-20

目录

    /

    返回文章
    返回