金属氧化物异质结光电探测器研究进展

马兴招, 唐利斌, 左文彬, 张玉平, 姬荣斌

马兴招, 唐利斌, 左文彬, 张玉平, 姬荣斌. 金属氧化物异质结光电探测器研究进展[J]. 红外技术, 2024, 46(4): 363-375.
引用本文: 马兴招, 唐利斌, 左文彬, 张玉平, 姬荣斌. 金属氧化物异质结光电探测器研究进展[J]. 红外技术, 2024, 46(4): 363-375.
MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
Citation: MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.

金属氧化物异质结光电探测器研究进展

基金项目: 

国家重点研发计划 2019YFB2203404

云南省创新团队项目 2018HC020

详细信息
    作者简介:

    马兴招(1995-),男,硕士研究生,研究方向是硅基异质结光电探测器

    通讯作者:

    唐利斌(1978-),男,正高级工程师,博士生导师,主要从事光电材料与器件的研究。E-mail: scitang@163.com

  • 中图分类号: TN304.055

Research Progress in the Metal Oxide Heterojunction Photodetectors

  • 摘要: 金属氧化物(metal oxide,MO)因其具有易于制备、高稳定性、对载流子的选择性传输等优点,被广泛应用于光电探测领域。MO材料具有较强的光吸收,但表面效应和缺陷态等问题导致了MO光电探测器响应速度低和暗电流较大的问题。异质结中的内建电场可以有效促进光生电子-空穴对的分离,从而提升器件响应速度和降低器件暗电流。因此,构建金属氧化物异质结光电探测器(heterojunction photodetectors,HPDs),对于MO在光电子领域的进一步应用具有重要的意义。本文先介绍了MO的界面性质,然后围绕PN、PIN和同型异质结3种结构,对金属氧化物HPDs的工作机制进行了阐述。接着对响应波段在紫外-可见-近红外光区的、具有不同结构的MO/MO和MO/Si HPDs的性能参数进行了分析和比较,并讨论了金属氧化物HPDs的性能优化方法,最后对金属氧化物HPDs的发展进行了展望。
    Abstract: Metal oxides (MOs) have been widely used in photodetection because of advantages such as easy preparation, high stability, and selective transport of carriers. The MO materials exhibit strong light absorption properties. However, there are issues with MO photodetectors such as their low response speed and large dark current owing to the surface effects and defect states. The built-in electric field in the heterojunction can effectively promote the separation of photogenerated electron-hole pairs, thus improving the device response speed and reducing the dark current. Thus, the construction of metal oxide heterojunction photodetectors (HPDs) is of great significance for the further application of MO in the field of optoelectronics. This paper introduces the interface properties of MO and elaborates on the working mechanism of metal oxide HPDs around the PN, PIN, and isotype heterojunctions. Next, the performance parameters of MO/MO and MO/Si HPDs with different structure and response in UV-Vis-NIR band are analyzed and compared. Subsequently, improved methods of the metal oxide HPDs performances are discussed. Finally, the development of metal oxide HPDs is discussed.
  • 快速反射镜由精密伺服控制相应的转角从而精确控制光束的偏转角度,它相对于普通的反射镜具有响应速度快、工作带宽高、指向精度高等优点[1-2]。伴随着航空光学成像、遥感技术等领域对成像分辨率的要求不断提高,大口径、长焦距光学系统在光电稳定平台获得广泛的应用。为满足大口径航空光学系统成像的高质量的要求,基于大口径快速反射镜温度-高度环境下的高精度跟瞄测试方法,大口径快速反射镜模拟框架粗稳伺服残差,测试光学系统精稳跟踪性能,能较真实地评估光学系统成像质量。如图 1所示。

    图  1  模拟应用简图
    Figure  1.  Simulation application sketch

    其中对于大口径快速反射镜的控制方法决定了其稳定性能,间接地影响对光学系统成像质量的评价。其中文献[3]采用改进根轨迹方法去设计PID(proportional integral derivative)参量,保证良好的系统动态性能且改善系统机械谐振问题。但该方法需精准系统模型数学表达式。文献[4]采用改进自抗扰的方法,验证了低频信号下,该方法在原有自抗扰算法的基础上减小系统响应时间,提升系统跟踪精度。但缺乏工程化的理论保障。文献[5]采用基于内积的逆模型补偿方法可获得较好的控制效果,但当外界环境变化或受到干扰,则需要重新设计。

    因此本文提出模糊自适应整定PID控制算法,在传统PID控制算法基础上,引入模糊理论和参数自整定方法,既具有模糊理论不完全依赖于精确模型,又能发挥出传统PID控制设计上简单、易于工程实现、鲁棒性好等特点。

    本文以ϕ500 mm大口径快速反射镜系统为研究对象,由反射镜、音圈电机、控制器、线性功率放大器、电涡流位移传感器、反射镜基座等部分组成。该系统机械结构如图 2所示。

    图  2  ϕ500 mm大口径快速反射镜结构
    Figure  2.  ϕ500 mm large aperture fast steering mirror mechanical structure

    该反射镜系统有XY两轴,每一个轴上装有两个音圈电机,反射镜安装在镜托上,镜托又通过“金字塔”状柔性铰链[6](如图 3所示)与反射镜基座相连,同一轴上两个音圈电机直线运动推挽镜托,围绕旋转中心形成推挽力矩,推动“金字塔”状柔性铰链产生弹性位移,进而使得反射镜偏转。反馈测量元件为电涡流传感器,安装位置是与两轴成45°夹角。

    图  3  “金字塔”状柔性铰链
    Figure  3.  Pyramid flexible hinges

    其工作原理为当给定输入信号时,控制器根据相应控制算法将控制量输出到音圈电机驱动器上,同轴上的两个音圈电机获得大小相等且方向相反的驱动力,进而产生推挽驱动力矩,推动“金字塔”状柔性铰链在这个轴线方向上产生位移变化,通过电涡流传感器检测位移的变化(转换为转角),反馈给控制器,形成一个闭环控制系统。ϕ500 mm大口径快速反射镜的控制框图如图 4所示。

    图  4  ϕ500 mm FSM系统控制原理框图
    Figure  4.  ϕ500 mm FSM system control schematical diagram

    ϕ500 mm大口径快速反射镜系统中包含有功率放大器、电涡流传感器、“金字塔”状柔性铰链和音圈电机等部分。其中功率放大器,传感器、柔性铰链等数学模型都可等效为一个比例模块,主要是音圈电机的数学模型的建立,将其等效为一个质量-阻尼-弹簧模型。如图 5所示。其中力学平衡方程方程为:

    $$\begin{gathered} {F_{\rm{t}}} - kx - c\frac{{{\rm{d}}x}}{{{\rm{d}}t}} = m\frac{{{{\rm{d}}^2}x}}{{{\rm{d}}{t^2}}} \\ {F_{\rm{t}}} = {K_{\rm{t}}}I = BLI \\ \end{gathered} $$ (1)
    图  5  质量-阻尼-弹簧模型
    Figure  5.  Mass-damped-spring model

    电压平衡方程为:

    $$u = L\frac{{{\rm{d}}i}}{{{\rm{d}}t}} + Ri + {K_{\rm{e}}}\frac{{{\rm{d}}x}}{{{\rm{d}}t}}$$ (2)

    式中:F为作用在质量块m上的力;c为阻尼系数;I为电流;k为弹簧弹性系数;x为位移;L为电机电感;R为电机内阻;Kt为推力常数;Ke为反电动势系数。

    根据各部分元器件的物理特性,建立大口径快速反射镜系统的数学模型如图 6所示。

    图  6  系统数学模型
    Figure  6.  System mathematical model

    各参数的定义如表 1所示。

    表  1  数学模型的参数定义
    Table  1.  The parameter definition of the mathematical model
    Symbol Parameter
    L VCM inductance
    R VCM internal resistance
    Ke Back EMF coefficient
    Kt Force sensitivity
    Kc Flexible hinge elastic coefficient
    Ka Amplification coefficient
    M Load mass
    c System damping coefficient
    下载: 导出CSV 
    | 显示表格

    根据图 6可以求得被控对象的传递函数为:

    $$G(s) = \frac{{X(s)}}{{U(s)}} = \frac{{{K_{\rm{a}}}{K_{\rm{t}}}{K_{\rm{s}}}}}{{(M{s^2} + cs + k)(Ls + R) + {K_{\rm{t}}}{K_{\rm{e}}}s}}$$ (3)

    式中:s为复频率。

    但由于实际系统中,音圈电机的电感数值非常小,可以忽略不计。

    本文采用白噪声为输入信号,偏转位移角度作为输出信号,采用Matlab中的系统辨识工具箱对大口径快速反射镜系统进行模型辨识,得到ϕ500 mm大口径快速反射镜系统的开环传递函数为:

    $$G(s) = \frac{{X(s)}}{{U(s)}} = \frac{{5515.6}}{{{s^2} + 173.8s + 3473.2}}$$ (4)

    式(4)就作为下面实验部分的被控对象的数学模型,对它展开实验仿真。

    模糊理论可解决专家经验不易精确描述和不易定量表示等问题。其运用模糊数学理论和方法,用模糊数集表示规则的条件、操作,并把控制规则以及其他有关信息(如初始PID参数、评价指标等)作为知识库存入到计算机中,然后根据实际系统的响应情况,运用模糊理论推理,得到最佳输出参数,即可实现对最佳PID参数的自动调整[7]

    模糊控制器是把误差e和误差变化率ec作为输入,以满足任意时刻的eec对PID调节器中KpKiKd 3个参数自整定的要求[8],其控制器结构如图 7所示。

    图  7  模糊控制器结构图
    Figure  7.  Fuzzy controller structure diagram

    模糊控制的核心就是模糊控制器,具备下列3个功能:

    ① 将系统偏差从准确数字量转化为模糊量,即为模糊化过程。

    ② 由给定的对应模糊规则对模糊量进行模糊推理。

    ③ 将推理后的模糊输出量转化为精确量,即为反模糊化。

    模糊化是对精准数字量到模糊量的转换。模糊化过程中的模糊化函数一般用隶属度函数来表示。图 8有常用的3种模糊化函数。

    设输入变量为eec,输出变量为KpKiKd,且定义模糊变量对应的变化区间[-6, 6],对应论域为:

    $$ e、{e_{\rm{c}}}、{K_{\rm{p}}}、{K_{\rm{i}}}、{K_{\rm{d}}} = \{ - 6, - 4, - 2, 0, 2, 4, 6\} $$
    图  8  三种模糊化函数
    Figure  8.  3 kinds of fuzzy functions

    并设其模糊子集为:

    $$ e、{e_{\rm{c}}}、{K_{\rm{p}}}、{K_{\rm{i}}}、{K_{\rm{d}}} = \{ {\rm{NB, NM, NS, Z, PS, PM, PB}}\} $$

    其中N、Z、P表示负、零、正。B、M、S表示大、中、小。输入、输出变量的隶属度曲线如图 9图 10所示。

    图  9  eec的隶属度曲线
    Figure  9.  eec membership curves
    图  10  KpKiKd的隶属度曲线
    Figure  10.  Kp, Ki, Kd membership curves

    知识库包含规则库和数据库。通常以规则表的形式表示模糊规则。

    根据3个控制参数KpKiKd在控制过程中的作用及其变化对控制系统产生不同的影响,得到模糊控制器中3个控制参数的自整定原则。

    参考文献[9]中自整定原则并综合专家的控制经验,建立如下模糊逻辑语句。

    1) If (e is NB) and (ec is NB) then (Kp is PB)(Ki is NB)(Kd is PS)

    2) If (e is NB) and (ec is NM) then (Kp is PB)(Ki is NB)(Kd is NS)

    3) If (e is NB) and (ec is NS) then (Kp is PM)(Ki is NM)( Kd is NB)

    ......

    49) If (e is PB) and (ec is PB) then (Kp is NB)( Ki is PB)( Kd is PB)

    由以上逻辑模糊语句可以得到以下KpKiKd的模糊规则表(如表 2~表 4所示)。

    表  2  Kp的模糊规则表
    Table  2.  Fuzzy rules table of Kp
    Kp ec
    NB NM NS Z PS PM PB
    e NB PB PB PM PM PS Z Z
    NM PB PB PM PS PS Z NS
    NS PM PM PM PS Z NS NS
    Z PM PM PS Z NS NM NM
    PS PS PS Z NS NS NM NM
    PM PS Z NS NM NM NM NB
    PB Z Z NM NM NM NB NB
    下载: 导出CSV 
    | 显示表格
    表  3  Ki 的模糊规则表
    Table  3.  Fuzzy rules table of Ki
    Ki ec
    NB NM NS Z PS PM PB
    e NB NB NB NM NM NS Z Z
    NM NB NB NM NS NS Z Z
    NS NB PM NS NS Z PS PS
    Z NM NM NS Z PS PM PM
    PS NM NS Z PS PS PM PB
    PM Z Z PS PS PM PB PB
    PB Z Z PS PM PM PB PB
    下载: 导出CSV 
    | 显示表格
    表  4  Kd的模糊规则表
    Table  4.  Fuzzy rules table of Kd
    Kd ec
    NB NM NS Z PS PM PB
    e NB PS NS NB NB NB NM PS
    NM PS NS NB NM NM NS Z
    NS Z NS NM NM NS NS Z
    Z Z NS NS NS NS NS Z
    PS Z Z Z Z Z Z Z
    PM PB NS PS PS PS PS PB
    PB PB PM PM PM PS PS PB
    下载: 导出CSV 
    | 显示表格

    反模糊化过程就是精确化。在模糊集合中取出代表模糊推理结果最大可能性的精确值。

    综合考虑,最大隶属度函数法常用于对控制要求不高且计算相对简单的系统,而重心法的推理控制输出会更加平滑,因此本文采用重心法来进行反模糊化处理。得到Kp'Ki'Kd'的模糊控制调整参数,定义参数KpKiKd调整算式如下:

    $$\left\{ \begin{gathered} {K_{\rm{p}}}{\rm{ = }}{K_{{\rm{p0}}}} + \{ e, {e_{\rm{c}}}\} {K_{\rm{p}}}'{\rm{ = }}{K_{{\rm{p}}0}} + {\Delta _{\rm{p}}}{K_{\rm{p}}}' \\ {K_{\rm{i}}}{\rm{ = }}{K_{{\rm{i0}}}} + \{ e, {e_{\rm{c}}}\} {K_{\rm{i}}}' = {K_{{\rm{i}}0}} + {\Delta _{\rm{i}}}{K_{\rm{i}}}' \\ {K_{\rm{d}}}{\rm{ = }}{K_{{\rm{d}}0}} + \{ e, {e_{\rm{c}}}\} {K_{\rm{d}}}' = {K_{{\rm{d0}}}} + {\Delta _{\rm{d}}}{K_{\rm{d}}}' \\ \end{gathered} \right.$$ (5)

    式中:$\Delta $p=1/5,$\Delta $i=1/10,$\Delta $d=1/10为量化因子,Kp0Ki0Kd0为初始参数。通过不断检测、计算eec,并传入模糊控制器中,得到3个输出参数KpKiKd的调整量,实现对控制器参数的自适应调整[10]

    在Matlab/Simulink中搭建整个系统模型如图 11所示,基于模糊控制与基于传统PID控制的ϕ500 mm大口径快速反射镜仿真模型。

    图  11  ϕ500 mm FSM系统模型
    Figure  11.  ϕ500 mm FSM system model

    传统的PID控制参数通过临界比例度法[11]整定控制参数,得到的3个参数KpKiKd,同时显示阶跃输入信号(在某一时刻加干扰)、正弦信号,传统PID输出和模糊自适应PID输出如图 12图 13所示,ϕ500 mm大口径快速反射镜系统的阶跃响应如图 14所示,正弦信号跟踪如图 15所示。

    图  12  控制系统阶跃响应输出
    Figure  12.  Control system step response output
    图  13  控制系统正弦跟踪输出
    Figure  13.  Control system sine tracking output
    图  14  ϕ500 mm快速反射镜系统阶跃响应
    Figure  14.  ϕ500 mm FSM system step response
    图  15  ϕ500 mm快速反射镜系统正弦跟踪
    Figure  15.  ϕ500 mm FSM system sine tracking

    根据上图 12图 13图 14图 15输出波形可分析得到,模糊自适应PID与传统PID控制相比,动态性能上调节时间更短,超调量也稍小,能够比较迅速地进入稳态,并且抗干扰的能力更强,能较快恢复到系统的稳定状态。具体数值如表 5所示。

    表  5  控制性能对比
    Table  5.  The comparison of control performance
    Controller Control performance
    Transition process Overshoot/(%) Settling time/ms Raising time/ms Peaking time/ms
    Classic PID Dampled oscillation 7.10 112.0 35.5 81.0
    Fuzzy PID Dampled oscillation 5.40 51.0 12.8 40.0
    下载: 导出CSV 
    | 显示表格

    针对模糊控制部分,进一步观察模糊控制器的3个输出KpKiKd的变化如图 16图 17所示。

    图  16  阶跃信号下KpKiKd的变化曲线
    Figure  16.  Parameters Kp, Ki, Kd change curves under step signal
    图  17  正弦信号下KpKiKd的变化曲线
    Figure  17.  Parameters Kp, Ki, Kd change curves under sine signal

    图 1617分析可见,模糊控制器的3个输出参数随着系统调节发生变化,待系统趋于稳定后,参数不再发生变化且趋于稳定。对于正弦响应,系统稳态一直在变化,3个参数输出也一直处于类似正弦规律性变化。

    与传统PID控制相比,本文提出的控制算法,系统上升时间缩短至12.8 ms左右,超调量减小了31%左右,达5.4%,调节时间提前2.2倍左右,达51 ms左右,而且抗干扰能力相对较强。均优于传统PID控制,明显改善大口径快速反射镜系统的动态、稳态性能,提高了响应速度,减小了跟踪误差。所以选用大口径快速反射镜去模拟框架的粗稳伺服残差进而检测光学成像系统的精稳跟踪性能。航空光学成像检测系统的精度能直接评价成像质量好坏。系统检测精度越高,就能对光学成像质量给出越高的评价,具有重大意义。

    模糊控制算法的控制效果很大程度上依赖于专家控制经验,因此整个系统的动态、稳态性能受到专家控制经验的局限,但人工智能和机器学习的不断发展[12],上述存在问题慢慢就会有新的解决途径。

  • 图  1   光电探测器的应用

    Figure  1.   Applications of photodetectors

    图  2   MO的界面特性:(a) 在MO界面上可以设计的关联电子的对称性和自由度[12];(b) 传统半导体的相图(左)和界面电子行为(右);(c)和(d)MO的相图(左)和界面电子行为(右),分别对应于产生电子形变(c)和不产生电子形变的情形(d)[13]

    Figure  2.   Properties of the MO interfaces: (a) The symmetries and degrees of freedom of correlated electrons that can be engineered at MO interfaces[12]; (b) Phase diagrams (left) and interface electronic behaviors (right) for conventional semiconductors; (c) and (d) Phase diagrams (left) and interface electronic behaviors (right) for MO, corresponding to the situations in which (c) and no electronic deformation is generated (d), respectively[13]

    图  3   金属氧化物HPDs的载流子传输机制:(a) MO/MO和(b)MO/Si PN结HPDs的能带示意图[23-24];(c) MO/MO和(d) MO/Si PIN结HPDs能带示意图[25-26];(e) MO/MO和(f) MO/Si同型异质结HPDs能带示意图[27-28]

    Figure  3.   Carrier transport mechanism of metal oxide HPDs: The energy band diagrams of (a) MO/MO and (b) MO/Si PN junction HPDs[23-24]; (c) MO/MO and (d) MO/Si PIN junction HPDs[25-26]; (e) MO/MO and (f) MO/Si isotype HPDs[27-28]

    图  4   金属氧化物HPDs的发展历程

    Figure  4.   Developments roadmap of metal oxide HPDs

    图  5   薄膜型MO/MO HPDs的结构和性能:(a) n-Ga2O3/p-NiO HPD的结构[71];(b) n-Ga2O3/p-NiO HPD的瞬态响应行为[71];(c) WO3/TiO2 HPD的结构[28];(d) TiO2,WO3和WO3/TiO2 PD I-V特性[28];(e) 柔性ZnO/SrCoOx HPD的结构[40];(f) ZnO/SrCoOx HPD在不同弯曲状态下的I-T曲线[40]

    Figure  5.   Structures and properties of the film-based MO/MO HPDs: (a) The structure of n-Ga2O3/p-NiO HPD[71]; (b) Transient response behavior of n-Ga2O3/p-NiO HPD[71]; (c) The structure of the WO3/TiO2 HPD[28]; (d) I-V characteristic of TiO2, WO3 and WO3/TiO2 PD[28]; (e) The structure of the flexible ZnO/SrCoOx HPD[40]; (f) I-T curves of the ZnO/SrCoOx HPD in different bending states[40]

    图  6   其他结构的MO/MO HPDs的性能:(a) ZnO/SnO2核壳纳米棒阵列HPD的结构[61];(b) ZnO/SnO2核壳纳米棒阵列的横截面SEM图像[61];(c) ZnO/SnO2 HPD在1 V偏压下的I-T曲线[61];(d) NiO纳米片/ZnO纳米棒阵列HPD的结构[73];(e) 零偏下的响应率在300~800 nm波长范围内的变化[73];(f) 横杆NiO/SnO2纳米纤维阵列HPD的结构[35];(g) NiO/SnO2 HPD的工作原理[35];(h) NiO/SnO2HPD在-5 V偏压下的响应率和探测率曲线[35];(i) α‑Ga2O3纳米棒阵列/Cu2O纳米球HPD的结构及其测试系统[39]

    Figure  6.   Properties of MO/MO HPDs with other structures: (a) The structure of ZnO/SnO2 core-shell nanorods array HPD[61]; (b) Cross-sectional SEM images of ZnO/SnO2 core-shell nanorods array[61]; (c) I-T curves of ZnO/SnO2 HPD at 1V bias[61]; (d) Structure of NiO nanosheet/ZnO nanorods array HPD[73]; (e) Wavelength-dependent responsivity at zero bias ranging from 300-800 nm[73]; (f) Structure of cross-bar NiO/SnO2 nanofiber array HPD[35]; (g) Working principle of the NiO/SnO2 HPD[35]; (h) Responsivity and detectivity curves of NiO/SnO2 HPD at -5 V bias[35]; (i) Structure and testing system of α‑Ga2O3 nanorods array/Cu2O nanosphere HPD[39]

    图  7   MO/Si HPDs的结构和性能:(a) p-NiO/n-Si HPD的结构[76];(b) p-NiO/n-Si HPD I-V特性,插图显示了I-V曲线的局部放大图[76];(c) n-ZnO纳米管/p-Si HPD的结构[55];(d) n-ZnO/p-Si HPD的响应率和探测率曲线[55];(e) r-GO/n-Si HPD的结构[51];(f) r-GO/n-Si HPD的瞬态响应[51]

    Figure  7.   Structures and properties of MO/Si HPDs: (a) Structure of p-NiO/n-Si HPD[76]; (b) I-V characteristic curves of the p-NiO/n-Si HPD, the inset shows a close-up view of the I-V curves[76]; (c) Structure of the n-ZnO nanotubes/p-Si HPD[55]; (d) The responsivity and detectivity curves of the n-ZnO/p-Si HPD[55]; (e) Structure of the r-GO/n-Si HPD[51]; (f)Transient response of the r-GO/n-Si HPD[51]

    图  8   金属氧化物HPDs的性能优化:(a) ε-Ga2O3/p-Si和ε-Ga2O3/Al2O3/p-Si HPDs的log I-V曲线[26];(b) NiO/ZnO和NiO/TiO2/ZnO HPDs在暗条件的log I-V曲线[67];(c) MoO3-x/Si HPD在光照下的J−V曲线[48];(d) p-NiO/n-ZnO和Pd NPs/p-NiO/n-ZnO NWs在可调制紫外光下的光电流和暗电流比[84];(e) Pd NPs/p-NiO/n-ZnO NWs的能带图[84];(f) 采用Al六方点等离子体阵列制备的Pd/TiO2/p-Si/Al HPD[87];(g) NiOx/n-Si和p-Ag: NiOx/n-Si HPDs的响应光谱[88];(h) 不同Eu掺杂浓度的TiO2薄膜的Tauc图[89];(i) n-β-Ga2O3/p-MnO QD和n-β-Ga2O3器件的响应光谱[37]

    Figure  8.   Performance optimization of metal oxide HPDs (a) Log I-V curves of ε-Ga2O3/p-Si and ε-Ga2O3/Al2O3/p-Si HPDs[26]; (b) Log I-V curves of NiO/ZnO and NiO/TiO2/ZnO HPDs in the dark[67]; (c) J-V curves of MoO3−x/Si HPD under illumination[48]; (d) Iphoto/Idark ratios for the p-NiO/n-ZnO and Pd NPs/p-NiO/n-ZnO NWs unde modulated UV illumination[84]; (e) Band diagrams for Pd NPs/p-NiO/n-ZnO NWs[84]; (f) Design of the fabricated Pd/TiO2/p-Si/Al HPD with Al hexagonal dots plasmonic array[87]; (g) Response spectra of NiOx/n-Si and p-Ag: NiOx/n-Si HPDs[88]; (h) Tauc plots of Eu: TiO2 films with different doping concentration[89]; (i) Response spectra of n-β-Ga2O3/p-MnO QDs and n-β-Ga2O3 device[37]

    表  1   不同MOs的性质

    Table  1   Properties of different MOs

    MOs Conduction type Eg/(eV) Exciton binding energy/(meV) Crystal system Space group Ref.
    ZnO(Wurtzite) n 3.3 60 Hexagonal P63mc [2]
    TiO2(Anatase) n 3.2 130 Tetragonal C4/amc [3]
    TiO2(Rutile) n 3.0 130 Tetragonal P42/mmm [3]
    β-Ga2O3 n 4.9 40-50 Monoclinic C2/m [4]
    SnO2 n 3.6 130 Tetragonal P42/mnm [5]
    MoO3 p 3.0 - Orthorhombic - [6]
    V2O5 P 2.3 - Monoclinic P21/C [7]
    NiO P 3.6 110 Cubic Fm3m [8]
    下载: 导出CSV

    表  2   MO/MO和MO/Si HPDs的性能参数对比

    Table  2   Comparisons of performance parameters for MO/MO and MO/Si HPDs

    Year Structure Fabrication method Bias/V λ/nm EQE/(%) R/(AW−1 D*/Jones Rectification ratio Rise/fall time Ref.
    2012 α-Fe2O3/p-Si Chemical solution deposition - 403 - 2×103 - - < 1 ms [43]
    2012 TiO2/SrTiO3 Sol-gel 10 260 - 46.1 - - 3.5 ms/1.4 s [44]
    2014 NiO/ZnO Spin coating -1 350 1800 10.2 4.66×1012 5×102 - [45]
    2015 CuO/SnO2 Magnetron sputtering 0.2 290 - 10.3 - - - [46]
    2015 MgZnO/i-MgO/p-Si MOCVD 6 240 600 1.16 - - 15 μs [47]
    2015 MoO3−x/n-Si Thermal evaporation 0 900 - - 6.29×1012 - 1/51.4 μs [48]
    2016 β-Ga2O3/p-Si Pulsed laser deposition 3 254 1.8×105 370 - - 1.79/0.27 s [49]
    2016 Mg0.18Zn0.82O/p-Si Magnetron sputtering - 320 - 4.21 - 32500 - [50]
    2016 GO/n-Si Modified Hummers method - 600 - 1.52 - - 2/3.7 ms [51]
    2017 NiO/n-Si Magnetron sputtering 5 365 - 4.5 - - 266/200 ms [52]
    2017 SnO2/SiO2/p-Si Magnetron sputtering -1 365 - 0.355 2.66×1012 - < 0.1 s [53]
    2017 TiO2/NiO Sol-gel
    spin-coating and oxidation
    6 280 80500 181.9 1.56×1014 - 717/598 ms [54]
    2017 p-Si/n-ZnO NTs Pulsed laser deposition -5 365 - 101.2 - - 0.44/0.59 s [55]
    2019 n-TiO2/p-Si Thermal oxidation -4 365 - 6.74 1.31×1012 - 127.6 /120.3 μs [56]
    2019 V2O5/n-Si Thermal evaporation - 940 - 0.185 1.34×1012 - 9.5/123 μs [57]
    2019 ZnO/NiO
    Electrospinning 0 350 - 0.415×10−3 - - 7.5/4.8 s [58]
    2019 n-SnO2/SiNWs Metal assisted chemical etching 5 UV - 0.35 8.03×1012 172.3 - [59]
    2020 NiO/β-Ga2O3 Magnetron sputtering 10 245 - 27.43
    3.14×1012 - - [60]
    2020 ZnO/SnO2 core-shell NAs Chemical liquid deposition 1 365 - 28.5(± 0.6) 2.9× 1014 - 8.7 s/20.8 s [61]
    2020 p-Cu2O/n-Si Successive ionic layer
    adsorption and reaction
    -5 500 3780 16.2 1.78×1012(−0.1 V) 118.4 < 10 ms [62]
    2021 MoO3−x/Al2O3/n-Si Thermal evaporation -5 980 900 7.11 9.85×1012 - 0.109/0.69 ms [63]
    2022 NiO/IGZO Magnetron sputtering 0 365 - 0.0288 6.99×1011 7.4×104 15/31 ms [64]
    2022 p-Mn2O3/n-Si Rapid thermal
    oxidation
    - 500 140 0.5 7.2×1012 - - [65]
    2022 p-Ag2O/n-Si Rapid thermal
    oxidation
    -4 450 118 0.43 9×1011 - - [66]
    2023 NiO/TiO2/ZnO Magnetron sputtering 2 365 - 291 6.9×1011 104 163/282 ms [67]
    2023 p-NiO/SiO2/n-ZnO Magnetron sputtering 2 365 2×103 5.77 1.51×1011 57 48 ms [68]
    2023 p-NiO/n-ZnO/n-Si Magnetron sputtering -1 280 - 3.672 3.3×1012 - 10.5/0.4 s [69]
    下载: 导出CSV
  • [1]

    YU X, Marks T J, Facchetti A. Metal oxides for optoelectronic applications[J]. Nature Materials, 2016, 15(4): 383-396. DOI: 10.1038/nmat4599

    [2]

    YAO J Q, DENG H, LI M, et al. Improving processes on ZnO-based ultraviolet photodetector[J]. Advanced Materials Research, 2013, 685: 195-200. DOI: 10.4028/www.scientific.net/AMR.685.195

    [3]

    Goldberg Y. Semiconductor near-ultraviolet photoelectronics[J]. Semiconductor Technology, 1999, 14(7): R41. DOI: 10.1088/0268-1242/14/7/201

    [4]

    CHEN X, REN F, GU S, et al. Review of gallium-oxide-based solar -blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415. DOI: 10.1364/PRJ.7.000381

    [5]

    Kar A, Stroscio M A, Dutta M, et al. Meyyappan, Observation of ultraviolet emission and effect of surface states on the luminescence from tin oxide nanowires[J]. Applied Physics Letters, 2009, 94: 101905. DOI: 10.1063/1.3097011

    [6]

    LI Lin, SUN Yuxuan, SUN Weifeng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides[J]. Acta PhysicaSinica, 2019, 68(5): 057101-3.

    [7]

    XIAO Z R, GUO G Y. Structural, electronic and magnetic properties of V2O5-x: An ab initio study[J]. The Journal of Chemical Physics, 2009, 130(21): 214704. DOI: 10.1063/1.3146790

    [8]

    Hwang J D, Chen H Y, Chen Y H, et al. Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering[J]. Nanotechnology, 2018, 29(29): 295705. DOI: 10.1088/1361-6528/aac230

    [9]

    OUYANG W, TENG F, HE J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials, 2019, 29(9): 1807672. DOI: 10.1002/adfm.201807672

    [10] 郭天超. 金属氧化物/硅异质结光电探测器的构建及性能调控[D]. 北京: 中国石油大学, 2020: 16.

    GUO Tianchao, Construction and Performance Modulation of Metal Oxides/Silicon Heterojunction Photodetectors[D]. Beijing: China University of Petroleum, 2020: 16.

    [11]

    CHEN S, FU Y, Ishaq M, et al. Carrier recombination suppression and transport enhancement enable high-performance self-powered broadband Sb2Se3 photodetectors[J]. InfoMat, 2023, 5(4): e12400. DOI: 10.1002/inf2.12400

    [12]

    HWANG H Y, Iwasa Y, Kawasaki M, et al. Emergent phenomena at oxide interfaces[J]. Nature Materials, 2012, 11(2): 103-113. DOI: 10.1038/nmat3223

    [13]

    Mannhart J, Schlom D G. Oxide interfaces—an opportunity for electronics[J]. Science, 2010, 327(5973): 1607-1611. DOI: 10.1126/science.1181862

    [14]

    Kennedy D. Breakthrough of the year[J]. Science, 2007, 318(5858): 1833-1833. DOI: 10.1126/science.1154158

    [15]

    Shim M, Guyot-Sionnest P. N-type colloidal semiconductor nanocrystals[J]. Nature, 2000, 407(6807): 981-983. DOI: 10.1038/35039577

    [16]

    JI T, LIU Q, ZOU R, et al. Enhanced UV-visible light photodetectors with a TiO2/Si heterojunction using band engineering[J]. Journal of Materials Chemistry C, 2017, 5(48): 12848-12856. DOI: 10.1039/C7TC04811D

    [17]

    CHEN X, XU Y, ZHOU D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied materials & Interfaces, 2017, 9(42): 36997-37005.

    [18]

    Serin N, Yildiz A, Alsaç A A, et al. Estimation of compensation ratio by identifying the presence of different hopping conduction mechanisms in SnO2 thin films[J]. Thin Solid Films, 2011, 519(7): 2302-2307. DOI: 10.1016/j.tsf.2010.11.027

    [19]

    Choi J M, Im S. Ultraviolet enhanced Si-photodetector using p-NiO films[J]. Applied Surface Science, 2005, 244(1-4): 435-438. DOI: 10.1016/j.apsusc.2004.09.152

    [20]

    Almora O, Gerling L G, Voz C, et al. Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells[J]. Solar Energy Materials and Solar Cells, 2017, 168: 221-226. DOI: 10.1016/j.solmat.2017.04.042

    [21]

    Bullock J, WAN Y, XU Z, et al. Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS Energy Letters, 2018, 3(3): 508-513. DOI: 10.1021/acsenergylett.7b01279

    [22]

    WU W, BAO J, JIA X, et al. Dopant-free back contact silicon heterojunction solar cells employing transition metal oxide emitters[J]. PhysicaStatus Solidi-Rapid Research Letters, 2016, 10(9): 662-667. DOI: 10.1002/pssr.201600254

    [23]

    Costas A, Florica C, Preda N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553. DOI: 10.1038/s41598-019-42060-w

    [24]

    Ahmed A A, Hashim M R, Qahtan T F, et al. Preparation and characteristics study of self-powered and fast response p-NiO/n-Si heterojunction photodetector[J]. Ceramics International, 2022, 48(14): 20078-20089. DOI: 10.1016/j.ceramint.2022.03.285

    [25]

    HWANG J D, WU M S. Separate absorption and multiplication solar-blind photodiodes based on p-NiO/MgO/n-ZnO heterostructure[J]. Nanotechnology, 2020, 32(1): 015503.

    [26]

    QIAN H, ZHANG X, MA Y, et al. Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition[J]. Vacuum, 2022, 200: 111019. DOI: 10.1016/j.vacuum.2022.111019

    [27]

    Mondal S, Halder S, Basak D. Ultrafast and ultrabroadband UV-vis-NIR photosensitivity under reverse and self-bias conditions by n+-ZnO/n-Si isotype heterojunction with > 1 kHz bandwidth[J]. ACS Applied Electronic Materials, 2023, 5(2): 1212-1223. DOI: 10.1021/acsaelm.2c01668

    [28]

    Reddy Y A K, Ajitha B, Sreedhar A, et al. Enhanced UV photodetector performance in bi-layer TiO2/WO3 sputtered films[J]. Applied Surface Science, 2019, 494: 575-582. DOI: 10.1016/j.apsusc.2019.07.124

    [29]

    ZU P, TANG Z K, WONG G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature[J]. Solid State Communications, 1997, 103(8): 459-463. DOI: 10.1016/S0038-1098(97)00216-0

    [30]

    Kawazoe H, Yanagi H, Ueda K, et al. Transparent p-type conducting oxides: design and fabrication of pn heterojunctions[J]. MRS Bulletin, 2000, 25(8): 28-36. DOI: 10.1557/mrs2000.148

    [31]

    Park J W, Bogorin D F, Cen C, et al. Creation of a two-dimensional electron gas at an oxide interface on silicon[J]. Nature Communications, 2010, 1(1): 94. DOI: 10.1038/ncomms1096

    [32]

    HONG Q, CAO Y, XU J, et al. Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20887-20894.

    [33]

    ZOU H, LI X, PENG W, et al. Piezo-phototronic effect on selective electron or hole transport through depletion region of vis-NIR broadband photodiode[J]. Advanced Materials, 2017, 29(29): 1701412. DOI: 10.1002/adma.201701412

    [34]

    WEI C, XU J, SHI S, et al. The improved photoresponse properties of self-powered NiO/ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO[J]. Journal of Colloid and Interface Science, 2020, 577: 279-289. DOI: 10.1016/j.jcis.2020.05.077

    [35]

    LONG Z, XU X, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048. DOI: 10.1002/aelm.201901048

    [36]

    ZHAO B, WANG F, CHEN H, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core–shell microwire[J]. Nano Letters, 2015, 15(6): 3988-3993. DOI: 10.1021/acs.nanolett.5b00906

    [37]

    Alwadai N, Alharbi Z, Alreshidi F, et al. Enhanced Photoresponsivity UV-C photodetectors using a p–n junction based on ultra-wide-band gap Sn-doped β-Ga2O3 microflake/MnO quantum dots[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 12127-12136.

    [38]

    XU R, RUAN S, ZHANG D, et al. Enhanced performance of ultraviolet photodetector modified by quantum dots with high responsivity and narrow detection region[J]. Journal of Alloys and Compounds, 2018, 751: 117-123. DOI: 10.1016/j.jallcom.2018.03.382

    [39]

    HE C, GUO D, CHEN K, et al. α-Ga2O3 nanorod array——Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103. DOI: 10.1021/acsanm.9b00527

    [40]

    WANG D, SHI P, XING R, et al. Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature[J]. Materials & Design, 2021, 203: 109616.

    [41]

    WU Z, ZHANG Z, SUN M, et al. Self-powered photodetector based on p-type CuBi2O4 with Fermi level engineering[J]. Advanced Materials Interfaces, 2021, 8(24): 2101443. DOI: 10.1002/admi.202101443

    [42]

    Ashtar M, Marwat M A, LI Z, et al. Self-powered ultraviolet/visible photodetector based on CuBi2O4/PbZr0.52Ti0.48O3 heterostructure[J]. Journal of Luminescence, 2023, 260: 119855. DOI: 10.1016/j.jlumin.2023.119855

    [43]

    SA T, WU G, QIN N, et al. Solution processed highly sensitive visible-light photodetectors based on α-Fe2O3/p-Si heterojunctions[J]. Sensors and Actuators B: Chemical, 2012, 173: 414-418. DOI: 10.1016/j.snb.2012.07.027

    [44]

    ZHANG M, ZHANG H, LV K, et al. Ultraviolet photodetector with high internal gain enhanced by TiO2/SrTiO3 heterojunction[J]. Optics Express, 2012, 20(6): 5936-5941. DOI: 10.1364/OE.20.005936

    [45]

    Kim D Y, Ryu J, Manders J, et al. Air-stable, solution-processed oxide p–n heterojunction ultraviolet photodetector[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 1370-1374.

    [46]

    XIE T, Hasan M R, QIU B, et al. High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions[J]. Applied Physics Letters, 2015, 107(24): 241108. DOI: 10.1063/1.4938129

    [47]

    XIE X, ZHANG Z, LI B, et al. Ultra-low threshold avalanche gain from solar-blindphotodetector based on graded-band-gap-cubic-MgZnO[J]. Optics Express, 2015, 23(25): 32329-32336. DOI: 10.1364/OE.23.032329

    [48]

    ZHAO C, LIANG Z, Su M, et al. Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25981-25990.

    [49]

    GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140. DOI: 10.1016/j.jallcom.2015.11.145

    [50]

    HWANG J D, WANG S Y, HWANG S B. Using oxygen-plasma treatment to improve the photoresponse of Mg0.18Zn0.82O/p-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2016, 656: 618-621. DOI: 10.1016/j.jallcom.2015.10.065

    [51]

    LI G, LIU L, WU G, et al. Self-powered UV——near infrared photodetector based on reduced graphene oxide/n-Si vertical heterojunction[J]. Small, 2016, 12(36): 5019-5026. DOI: 10.1002/smll.201600835

    [52]

    Ahmed A A, Devarajan M, Afzal N. Fabrication and characterization of high performance MSM UV photodetector based on NiO film[J]. Sensors and Actuators A: Physical, 2017, 262: 78-86. DOI: 10.1016/j.sna.2017.05.028

    [53]

    LING C, GUO T, LU W, et al. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction[J]. Nanoscale, 2017, 9(25): 8848-8857. DOI: 10.1039/C7NR03437G

    [54]

    ZHANG D, LIU C, XU R, et al. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiOpn hetero-junction and Ni/Au composite electrode[J]. Nanotechnology, 2017, 28(36): 365505. DOI: 10.1088/1361-6528/aa7bb8

    [55]

    Flemban T H, Haque M A, Ajia I, et al. A photodetector based on p-Si/n-ZnO nanotube heterojunctions with high ultraviolet responsivity[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37120-37127.

    [56]

    Chauhan K R, Patel D B. Functional nanocrystalline TiO2 thin films for UV enhanced highly responsive silicon photodetectors[J]. Journal of Alloys and Compounds, 2019, 792: 968-975. DOI: 10.1016/j.jallcom.2019.04.111

    [57]

    FU Y, LIU Y, MA K, et al. Interfacial engineering to boost photoresponse performance and stability of V2O5/n-Si heterojunction photodetectors[J]. Journal of Alloys and Compounds, 2020, 819: 153063. DOI: 10.1016/j.jallcom.2019.153063

    [58]

    ZHANG Z, NING Y, FANG X. From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photo-detectors[J]. Journal of Materials Chemistry C, 2019, 7(2): 223-229. DOI: 10.1039/C8TC05877F

    [59]

    Yuvaraja S, Kumar V, Dhasmana H, et al. Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode[J]. Journal of Materials Science: Materials in Electronics, 2019, 30: 7618-7628. DOI: 10.1007/s10854-019-01077-7

    [60]

    JIA M, WANG F, TANG L, et al. High-performance deep ultraviolet photodetector based on NiO/β-Ga2O3 heterojunction[J]. Nanoscale Research Letters, 2020, 15(1): 47. DOI: 10.1186/s11671-020-3271-9

    [61]

    FU Q M, PENG J L, YAO Z C, et al. Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays[J]. Applied Surface Science, 2020, 527: 146923. DOI: 10.1016/j.apsusc.2020.146923

    [62]

    HUANG C Y, WEI E C, YUAN C T. Dual functional modes for nano-structured p-Cu2O/n-Si heterojunction photodiodes[J]. Nanotechnology, 2020, 32(7): 075202.

    [63]

    XU Y, SHEN H, XU B, et al. High-performance MoOx/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer[J]. Nanotechnology, 2021, 32(27): 275502. DOI: 10.1088/1361-6528/abf37c

    [64]

    WANG M, ZHANG J, XIN Q, et al. Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature[J]. Optics Express, 2022, 30(15): 27453-27461. DOI: 10.1364/OE.463926

    [65]

    Kadhm A J, Ismail R A, Atwan A F. Fabrication of visible-enhanced nanostructured Mn2O3/Si heterojunction photodetector by rapid thermal oxidation[J]. Silicon, 2022, 14(10): 5297-5310. DOI: 10.1007/s12633-021-01314-x

    [66]

    Ismail R A, Al-Samarai A M E, Ahmed F M. Preparation of high-quantum efficiency nanostructured Ag2O/Si photodetector by rapid thermal oxidation of Ag2S film: the role of oxidation time[J]. Optik, 2022, 257: 168794. DOI: 10.1016/j.ijleo.2022.168794

    [67]

    SHANG G, TANG L, WU G, et al. High-performance NiO/TiO2/ZnO photovoltaic UV detector[J]. Sensors, 2023, 23(5): 2741. DOI: 10.3390/s23052741

    [68]

    JIA M, WANG F, TANG L, et al. Low-power-consumption ultraviolet photodetector based on p-NiO/SiO2/n-ZnO[J]. Optics & Laser Technology, 2023, 157: 108634.

    [69]

    HWANG J D, LIN M C. ZnO hole blocking layer induced highly UV responsive p-NiO/n-ZnO/n-Si heterojunction photodiodes[J]. Sensors and Actuators A: Physical, 2023, 349: 114087. DOI: 10.1016/j.sna.2022.114087

    [70]

    Basak D, Amin G, Mallik B, et al. Photoconductive UV detectors on sol-gel-synthesized ZnO films[J]. Journal of Crystal Growth, 2003, 256(1-2): 73-77. DOI: 10.1016/S0022-0248(03)01304-6

    [71]

    WANG Y, WU C, GUO D, et al. All-oxide NiO/Ga2O3 p-n junction for self-powered UV photodetector[J]. ACS Applied Electronic Materials, 2020, 2(7): 2032-2038. DOI: 10.1021/acsaelm.0c00301

    [72]

    ZOU J, ZHANG Q, HUANG K, et al. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10725-10729. DOI: 10.1021/jp1011236

    [73]

    CAO R, XU J, SHI S, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654. DOI: 10.1039/D0TC01956A

    [74]

    LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. DOI: 10.1002/adfm.201705237

    [75]

    Cheemadan S, Kumar M C S. Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films[J]. Materials Research Express, 2018, 5(4): 046401. DOI: 10.1088/2053-1591/aab875

    [76]

    Chaoudhary S, Dewasi A, Rastogi V, et al. Laser ablation fabrication of a p-NiO/n-Si heterojunction for broadband and self-powered UV-visible-NIR photodetection[J]. Nanotechnology, 2022, 33(25): 255202. DOI: 10.1088/1361-6528/ac5ca6

    [77]

    Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Advanced Materials, 2003, 15(5): 464-466. DOI: 10.1002/adma.200390108

    [78]

    JIANG D Y, ZHANG X Y, LIU Q S, et al. Improved ultraviolet/visible rejection ratio using MgZnO/SiO2/n-Si heterojunction photodetectors[J]. Applied Surface Science, 2010, 256(21): 6153-6156. DOI: 10.1016/j.apsusc.2010.03.051

    [79]

    ZHANG T C, GUO Y, MEI Z X, et al. Visible-blind ultraviolet photodetector based on double heterojunction of n-ZnO/insulator-MgO∕p-Si[J]. Applied Physics Letters, 2009, 94(11): 113508. DOI: 10.1063/1.3103272

    [80]

    Tasi D S, KANG C F, WANG H H, et al. n-ZnO/LaAlO3/p-Si heterojunction for visible-blind UV detection[J]. Optics Letters, 2012, 37(6): 1112-1114. DOI: 10.1364/OL.37.001112

    [81]

    LI Q, LI Z, YANG H, et al. Novel aluminum plasmonic absorber enhanced by extraordinary optical transmission[J]. Optics Express, 2016, 24(22): 25885-25893. DOI: 10.1364/OE.24.025885

    [82]

    WU Y, SUN X J, JIA Y P, et al. Review of improved spectral response of ultraviolet photodetectors by surface plasmon[J]. Chinese Physics B, 2018, 27(12): 126101. DOI: 10.1088/1674-1056/27/12/126101

    [83]

    El-Mahalawy A M, Wassel A R. Enhancement of organic/inorganic hybrid photodetector based on pentacene/n-Si by surface plasmonic effect of gold and silver nanoparticles: a comparative study[J]. Optics & Laser Technology, 2020, 131: 106395.

    [84]

    Hsu C L, WANG Y C, CHANG S P, et al. Ultraviolet/visible photodetectors based on p-n NiO/ZnO nanowires decorated with Pd nanoparticles[J]. ACS Applied Nano Materials, 2019, 2(10): 6343-6351. DOI: 10.1021/acsanm.9b01333

    [85]

    ZHANG X, CHEN Y L, LIU R S, et al. Plasmonic photocatalysis[J]. Reports on Progress in Physics, 2013, 76(4): 046401. DOI: 10.1088/0034-4885/76/4/046401

    [86]

    Kodama R H, Berkowitz A E. Atomic-scale magnetic modeling of oxide nanoparticles[J]. Physical Review B, 1999, 59(9): 6321. DOI: 10.1103/PhysRevB.59.6321

    [87]

    El-Mahalawy A M, Abdrabou M M, Wassel A R, et al. Plasmonic enhanced ultraviolet photodetection performance of n-TiO2/p-Si anisotype heterojunction with aluminum patterned array[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110943. DOI: 10.1016/j.jpcs.2022.110943

    [88]

    HWANG J D, WANG S T. High-performance multicolor p-Ag: NiOx/n-Si heterojunction photodiode enhanced by Ag-doped NiOx[J]. Materials Science in Semiconductor Processing, 2022, 139: 106376. DOI: 10.1016/j.mssp.2021.106376

    [89]

    Ruzgar S, Caglar Y, Polat O, et al. An Investigation of the optoelectrical properties of n-TiO2Eu/p-Si heterojunction photodiode[J]. Surfaces and Interfaces, 2022, 30: 101832. DOI: 10.1016/j.surfin.2022.101832

  • 期刊类型引用(6)

    1. 冯万臣,李亮,张建强. 快速反射镜的系统辨识与回路成形H_∞鲁棒控制. 光学精密工程. 2024(10): 1511-1527 . 百度学术
    2. 李智斌,李亮,张建强. 快速反射镜的复合快速非奇异终端滑模控制. 中国光学(中英文). 2024(04): 959-970 . 百度学术
    3. 张亦睿,陈波,周益林,贾晶晶,李赵仪. 倾斜镜的变论域自适应模糊PID控制方法. 火力与指挥控制. 2024(09): 146-152 . 百度学术
    4. 王昌,徐朝阳,韦舒天,高健,马向辉. 微型桩基础钻机给进机构自动化控制技术. 机械与电子. 2023(05): 41-45 . 百度学术
    5. 李智斌,李亮,张建强,孙崇尚. 双轴音圈电机快速反射镜的系统建模与滑模控制. 光学精密工程. 2023(24): 3580-3594 . 百度学术
    6. 徐巍,葛启发,张维国. 基于模糊PID的风机风量控制系统. 有色设备. 2022(02): 9-13+17 . 百度学术

    其他类型引用(7)

图(8)  /  表(2)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  52
  • PDF下载量:  128
  • 被引次数: 13
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-12
  • 刊出日期:  2024-04-19

目录

/

返回文章
返回